Biofortification with copper nanoparticles improves yield and bioactive compounds in melon fruits

Authors

  • Alain Buendía-García Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez y Carretera Santa Fe s/n, Torreón, Coahuila, México. CP. 27010
  • José R. Paredes-Jácome Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez y Carretera Santa Fe s/n, Torreón, Coahuila, México. CP. 27010
  • Reyna R. Guillén-Enríquez Tecnológico Nacional de México-Instituto Tecnológico de Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México. CP. 27170
  • Selene Y. Márquez-Guerrero Tecnológico Nacional de México-Instituto Tecnológico de Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México. CP. 27170
  • Pablo Preciado-Rangel Tecnológico Nacional de México-Instituto Tecnológico de Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México. CP. 27170
  • Ricardo I. Ramírez-Gottfried Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez y Carretera Santa Fe s/n, Torreón, Coahuila, México. CP. 27010

DOI:

https://doi.org/10.29312/remexca.v15i8.3851

Keywords:

Cucumis melo L., antioxidants, nanobiofortification

Abstract

The use of nanotechnology allows greater sustainability in agricultural systems by reducing the environmental impact of agrochemical use. Among the main nanoproducts, metal nanoparticles (NPs) have been used to improve yield and modulate bioactive compounds in crops. The present study was conducted during the spring-summer cycle of 2022 with the aim of evaluating the foliar spray of five increasing doses of copper nanoparticles (CuO NPs): 150, 200, 250, 300, and 350 mg L-1 and a control treatment in melon crops. During harvest, yield, nutraceutical quality, enzymatic activity, and its bioaccumulation in melon fruits were determined. The foliar application of CuO NPs induced an increase in yield and biosynthesis of bioactive compounds, as well as their bioaccumulation in the pulp; nevertheless, high doses cause the opposite effect due to their accumulation. The responses of melon crops to CuO NPs depend on the dose used as they can induce beneficial or negative effects; therefore, further research is needed.

Downloads

Download data is not yet available.

References

AOAC. 1990. Association of Official Analytical Chemists. Official Methods of Analysis, 15th Ed. Association of Official Analytical Chemists: Washington, DC, USA. 2:910-928.

Ahmed, B. A.; Saghir, M. K. and Musarrat, J. 2018. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): a study on growth dynamics and plant cell death. Environ. Pollut. 240(1):802-816.

Al-Hakkani, M. F. 2020. Biogenic copper nanoparticles and their applications: a review. SN Applied Sciences. 2(3):1-20. Doi.org/10.1007/s42452-020-2279-1.

AlQuraidi, A. O.; Mosa, K. A. and Ramamoorthy, K. 2019. Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum Apiaceae). Plants. 8(1):19-31.

Amer, M. W. and Awwad, A. M. 2021. Green synthesis of copper nanoparticles by citrus limon fruits extract, characterization and antibacterial activity. International Scientific Organization. 7(1):1-8. Doi.org/10.5281/zenodo.4017993.

Brand-Williams, W.; Cuvelier, M. E. and Berset, C. L. W. T. 1995. Use of a free radical method to evaluate antioxidant activity. Food Science. 28(1):25-30. Doi.org/10.1016/S0023-6438(95):80008-5.

Da-Costa, M. V. J. and Sharma, P. K. 2016. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis and antioxidant response in Oryza sativa. Photosynthetica. 54(1):110-119. https://doi.org/10.1007/s11099-015-0167-5.

Davidson, K. H.; Pillai, S. S.; Nagashima, Y.; Singh, J.; Metrani, R.; Crosby, K. M.; Jifon, J.; Patil, B.; Niyakan, S.; Qian, X. and Koiwa, H. 2023. Melon (Cucumis melo) fruit-specific monoterpene synthase. Molecular Horticulture. 3(1):1-4. Doi.org/10.1186/s43897-023-00051-6.

Dhaliwal, S. S.; Sharma, V.; Shukla, A. K.; Verma, V.; Kaur, M.; Ondrisik, P. and Hossain, A. 2022. Biofortification is a frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Molecules. 27(4):1-38. https://doi.org/10.3390/molecules27041340.

Esparza, R. J. R.; Stone, M. B.; Stushnoff, C. E.; Pilon, S. P. and Kendall, P. A. 2006. Effects of ascorbic acid applied by two hydrocooling methods on physical and chemical properties of green leaf lettuce stored at 5 °C. Journal of Food Science. 71(3):270-276. https://doi.org/10.1111/j.1365-2621.2006.tb15653.x.

Espinoza-Arellano, J. J.; Fabela-Hernández, A.; Gaytán-Mascorro, A.; Reyes-González, A y Sánchez-Toledano, B. I. 2023. Cuantificación y uso de pérdidas de alimentos: caso del melón Cantaloupe en una región del Norte Centro de México. Revista Mexicana de Ciencias Agrícolas. 14(2):159-70. https://doi.org/10.29312/remexca.v14i2.2962.

Gaytán-Alemán, L. R.; Nava-Camberos, U.; Mendoza-Pedroza, S. I.; Veliz-Deras, F. G. y Arellano-Rodríguez, G. 2021. Biofortificación con cobre en el forraje verde de trigo. Ecosistemas y Recursos Agropecuarios. 1(1):1-10. Doi.org/10.19136/era.a8nII.2885.

Gío-Trujillo, J. A.; Alvarado-López, C. J.; Pacheco-López, A.; Cristóbal-Alejo, J. y Reyes-Ramírez, A. 2022. Prespectivas futuras de la biofortificación de alimentos: la asociación con microorganismos del suelo. Ra Himhai. 18(4):175-199. Doi.org/10.35197/rx.18.04.2022.08.jg.

Gutiérrez-Ruelas, N. J.; Palacio-Márquez, A.; Sánchez, E.; Muñoz-Márquez, E.; Chávez-Mendoza, C.; Ojeda-Barrios, D. L. and Flores-Córdova, M. A. 2021. Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 49(3):12437. Doi.org/10.15835/nbha49312437.

Guo, Y.; Yu, Z.; Li, R.; Wang, L.; Xie, C. and Wu, Z. 2023. Cut-wounding promotes phenolic accumulation in Cucumis melo L. fruit (cv. Yugu) by regulating sucrose metabolism. Horticulturae. 9(258):1-15. https://doi.org/10.3390/horticulturae9020258.

Hernández-Hernández, H.; Quiterio-Gutiérrez, T.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; Hernández-Fuentes, A. D.; Fuente, M. C.; Valdés-Reyna, J. and Juárez-Maldonado, A. 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants. 8(10):1-17. Doi.org/10.3390/plants8100355.

Hong, J.; Wang, L.; Sun, Y.; Zhao, L.; Niu, G.; Tan, W.; Rico, C. M.; Peralta-Videa, J. R. and Gardea-Torresdey, J. L. 2016. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science of the total Environment. 563(1):904-911. https://doi.org/10.1016/j.scitotenv.2015.08.029.

Juárez-Maldonado, A.; Ortega-Ortíz, H.; Cadenas-Pliego, G.; Valdés-Reyna, J.; Pinedo-Espinoza, J. M.; López-Palestina, C. U. and Hernández-Fuentes, A. D. 2018. Foliar application of cu nanoparticles modified the content of bioactive compounds in moringa oleifera lam. Agronomy. 8(9):1-13. https://doi.org/10.3390/agronomy8090167.

Juárez-Maldonado, A.; Ortega-Ortiz, H.; González-Morales, S.; Morelos-Moreno, Á.; Cabrera-de la Fuente, M.; Sandoval-Rangel, A.; Cadenas-Pliego, G. and Benavides-Mendoza, A. 2019. Nanoparticles and nanomaterials as plant biostimulants. International Journal of Molecular Sciences. 20(1):162-179. https://doi.org/10.3390/ijms20010162.

Kalisz, A.; Húska, D.; Jurkow, R.; Dvořák, M.; Klejdus, B.; Caruso, G.; and Sękara, A. 2021. Nanoparticles of cerium, iron, and silicon oxides change the metabolism of phenols and flavonoids in butterhead lettuce and sweet pepper seedlings. Environmental Science: Nano. 8(7):1945-1959. Doi.org/10.1039/d1en00262g.

Kubo, K.; Pritchard, B.; and Phyo, A. S. 2021. How Chinese demand for fresh fruit and vegetables is creating new landscapes of rural development and vulnerability in Southeast Asia: insights from the Myanmar melon frontier. Geoforum. 122(1):32-40. Doi.org/10.1016/j.geoforum.2021.03.008. https://doi.org/10.1016/B978-0-12-803158-2.00025-4.

Kumar, S. and Trivedi, P. K. 2016. Heavy metal stress signaling in plants. In plant metal interaction. Elsevier Inc.: New York, NY, USA. 585-597 pp.

López-Vargas, E. R.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Romenus, K. A.; Fuente, M. C.; Benavides-Mendoza, A. and Juárez-Maldonado, A. 2018. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences. 8(7):2076-3417. Doi.org/10.3390/app8071020.

Ma, X.; Geiser-Lee, J.; Deng, Y. and Kolmakov, A. 2010. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of the total Environment. 408(1):3053-3061. https://doi.org/10.1016/j.scitotenv.2010.03.031.

Manchali, S.; Murthy, K. N.; Vishnuvardana, C. and Patil, B. S. 2021. Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants. 10(9):1-21. doi.org/10.3390/plants10091755.

Mosquera-Vivas, E. S.; Ayala-Aponte, A. A. and Serna-Cock, L. 2019. Ultrasonido y deshidratación osmótica como pretratamientos a la liofilización de melón (Cucumis melo L.). Información Tecnológica. 30(3):179-188. Doi.org/10.4067/S0718-07642019000300179.

Ortega-Ortiz, H.; Gaucin-Delgado, J. M.; Preciado-Rangel, P.; Fortis-Hernández, M.; Hernández-Montiel, L. G. and Cruz-Lázaro, E. 2022. Copper oxide nanoparticles biosynthetized improve germination and bioactive compounds in wheat sprouts. Natulae Botanicae Horti Agrobotanici Cluj-Napoca. 50(1):1-16. https://doi.org/10.15835/nbha50112657.

Pérez-Luque, A. 2017. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Frontiers in Environmental Science. 5(1):1-12.

Rajput, V. D.; Minkina, T.; Suskova, S.; Mandzhieva, S.; Tsitsuashvili, V.; Chapligin, V. and Fedorenko, A. 2018. Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. Bionanoscience. 8(1):36-42. https://doi.org/10.1007/s12668-017-0466-3.

Raha, S.; Mallick, R.; Basak, S. and Duttaroy, A. K. 2020. Is copper beneficial for COVID-19 patients? Medical Hypotheses. 142(1):109814. Doi.org/10.1016/j.mehy.2020.109814.

Rivera-Gutiérrez, R. G.; Preciado-Rangel, P.; Fortis-Hernández, M.; Yescas-Coronado, P. y Orozco-Vidal, J. A. 2021. Nanoparticulas de óxido de zinc y su efecto en el rendimiento y calidad de melón. Revista Mexicana de Ciencias Agrícolas. 12(5):791-803. https://doi.org/10.29312/remexca.v12i5.2987.

SIAP. 2021. Sistema de Información Agroalimentaria y Pesquera. Servicio de Información Estadística Agroalimentaria y Pesquera. https://www.gob.mx/siap/.

Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha, M. G.; Dumat, C. and Shahid, M. X. 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. 259(11): 4-35. Doi.org/10.1016/j.chemosphere.2020.127436.

Taylor, A. A.; Tsuji, J. S.; Garry, M. R.; McArdle, M. E.; Goodfellow, W. L.; Adams, W. J. and Menzie, C. A. 2020. Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environmental Management. 65(1):131-159. Doi.org/10.1007/s00267-019-01234-y.

Wahab, A.; Mushtaq, K.; Borak, S. G. and Bellam, N. 2020. Zinc-induced copper deficiency, sideroblastic anemia, and neutropenia: a perplexing facet of zinc excess. Clinical Case Reports. 8(9):1666-1671. Doi.org/10.1002/ccr3.2987.

Wang, Y.; Chantreau, M.; Sibout, R. and Hawkins, S. 2013. Plant cell wall lignification and monolignol metabolism. Frontiers in plant science. 4(1):1-30. https://doi.org/10.3389/fpls.2013.00220.

Published

2025-01-11

How to Cite

Buendía-García, Alain, José R. Paredes-Jácome, Reyna R. Guillén-Enríquez, Selene Y. Márquez-Guerrero, Pablo Preciado-Rangel, and Ricardo I. Ramírez-Gottfried. 2025. “Biofortification With Copper Nanoparticles Improves Yield and Bioactive Compounds in Melon Fruits”. Revista Mexicana De Ciencias Agrícolas 15 (8). México, ME. https://doi.org/10.29312/remexca.v15i8.3851.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>