Efecto de la nanobiofortificación con hierro en el rendimiento y compuestos bioactivos en pepino

Autores/as

  • Reyna Roxana Guillén-Enríquez Tecnológico Nacional de México-Campus Instituto Tecnológico de Torreón. Antigua Carretera Torreón-San Pedro km 7.5, Torreón, Coahuila, México
  • Lamberto Zuñiga-Estrada Campo Experimental Las Huastecas-INIFAP. Carretera Tampico-Mante km 55, Villa Cuauhtémoc, Tamaulipas, México. CP. 89610
  • Damaris Leopoldina Ojeda-Barrios Facultad de Ciencias Agrotecnológicas-Universidad Autónoma de Chihuahua- Campus Universitario I. Chihuahua, México. CP. 31350
  • Tomas Rivas-García CONACYT-Universidad Autónoma Chapingo. Carretera Federal México-Texcoco km 38.5, Chapingo, Texcoco, México. CP. 56230
  • Radamés Trejo-Valencia Tecnológico Nacional de México-Campus Instituto Tecnológico de Minatitlán. Blvd. Institutos Tecnológicos S/N, Col. Buena Vista Norte, Minatitlán, Veracruz, México. CP. 96848
  • Pablo Preciado-Rangel Tecnológico Nacional de México-Campus Instituto Tecnológico de Torreón. Antigua Carretera Torreón-San Pedro km 7.5, Torreón, Coahuila, México.

DOI:

https://doi.org/10.29312/remexca.v13i28.3272

Palabras clave:

Cucumis sativus L., compuestos bioactivos, nanopartículas

Resumen

El hierro (Fe) es un micronutriente indispensable para los seres vivos. No obstante, y a pesar de que es uno de los metales más abundantes en la corteza terrestres, existe baja disponibilidad para los cultivos, provocando un déficit en la alimentación de alrededor de dos millones de personas en el mundo. La nanobiofortificación puede mitigar esta deficiencia ya que su aplicación en los cultivos mejora la biosíntesis de compuestos bioactivos y propicia su bioacumulación. El objetivo de esta investigación fue evaluar el efecto de la aplicación foliar de nanopartículas de Fe (NPs Fe2O3) sobre el rendimiento y la biosíntesis de compuestos bioactivos en frutos de pepino. Cuatro tratamientos fueron aplicados vía foliar: 0, 50, 75 y 100 mg L-1 de NPs Fe2O3. La aspersión foliar con NPs Fe2O3 mejoró el rendimiento y la biosíntesis de compuestos bioactivos en frutos de pepino, al aumentar 38.99% el rendimiento, 30.18% la biosíntesis de compuestos y un incremento de 23.26% de Fe en frutos. La aspersión foliar de NPs Fe2O3 es una alternativa para incrementar la producción agrícola disminuyendo la deficiencia de Fe, al mismo tiempo, mejorando la biosíntesis de compuestos bioactivos con el fin de garantizar la seguridad alimentaria y nutricional.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbasifar, A.; Shahrabadi, F. and ValizadehKaji, B. 2020. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 43(8):1104-1118.

Blanco, R. R. and Vaquero, M. P. 2018. Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Sci. Emerging Technol. 51(1):126-138. DOI: https://doi.org/10.1016/j.ifset.2018.04.015

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248- 254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Brand, W. W.; Cuvelier, M. E. and Berset, C. L. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1):25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Cardeño, Á. V.; Molina, M. C.; Miranda, I.; García, G. T.; Morales, J. M. and Stashenko, E. E. 2007. Actividad antioxidante y contenido total de fenoles de los extractos etanólicos de Salvia aratocensis, Salvia sochensis, Bidens reptons y Montanoa ovalifolia. Scientia et Technica. 13(33):205-207.

Drostkar, E. Talebi, R. and Kanouni, H. 2016. Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. J. Res. Ecol. 4(2):221-228.

Elkhatim, K. A.; Elagib, R. A. and Hassan, A. B. 2018. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 6(5):1214-1219. DOI: https://doi.org/10.1002/fsn3.660

Gutiérrez, R. N. J.; Palacio, M. A.; Sánchez, Ch. E.; Muñoz, M. E.; Chávez, M. C.; Ojeda, B. D. L. and Flores, C. M. A. 2021. Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 49(3):12437-12437.

Hasanuzzaman, M.; Bhuyan, M. B.; Raza, A.; Hawrylak, N. B.; Matraszek, G. R.; Mahmud, J; Nahar, K. and Fujita, M. 2020. Selenium in plants: boon or bane? Environ. Exp. Bot. 178(10):1-41.

Hu, J.; Guo, H.; Li, J.; Wang, Y.; Xiao, L. and Xing, B.2017. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnol. 15(1):1-12. DOI: https://doi.org/10.1186/s12951-017-0286-1

Kandpal, N. D.; Sah, N.; Loshali, R.; Joshi R. and Prasad, J. 2014. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J. Sci. Industrial Res. 73(2):87-90.

Konate, A.; Wang, Y.; He, X.; Adeel, M.; Zhang, P.; Ma, Y.; Ding, Y.; Zhang, J.; Yang, J.; Kizito, S.; Rui, Y. and Zhang, Z. 2018. Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus L). Ecotoxicol. Environ. Safety. 165(9):547-554.

Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A. J.; Ma, C.; Bai, T.; Hao, Y. and Rui, Y. 2021. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollution. 269(1):116134-116146.

Lowry, G. V.; Avellan, A. and Gilbertson, L. M. 2019. Opportunities and challenges for nanotechnology in the Agri-Tech Revolution. Nature Nanotechnol. 14(6):517-522.

Lu, K.; Shen, D.; Liu, X.; Dong, S.; Jing, X.; Wu, W. and Mao, L. 2020. Uptake of iron oxide nanoparticles inhibits the photosynthesis of the wheat after foliar exposure. Chemosphere. 259(1):127445-127453.

Mogazy, A. M.; Mohamed, H. I. and Mahdy, O. M. 2022. Calcium and iron nanoparticles: a positive modulator of innate immune responses in strawberry against botrytis cinerea. Process Biochem. 115(1):128-145.

Moradbeygi, H.; Jamei, R.; Heidari, R. and Darvishzadeh, R. 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in dracocephalum moldavica L. plant under salinity stress. Sci. Hortic. 272(1):109537-109545.

Mosa, K. A.; Naggar, M.; Ramamoorthy, K.; Alawadhi, H.; Elnaggar, A.; Wartanian, S.; Ibrahim, E. and Hani, H. 2018. Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis Sativus L.) Frontiers Plant Sci. 9(7):1-13.

Preciado, R. P.; Valenzuela, G. A. A.; Pérez, G. L. A.; González, S. U.; Ortiz, D. S. A.; Buendía, G. A.; Edgar, O. y Rueda, P. 2022. La biofortificación foliar con hierro mejora la calidad nutracéutica y la capacidad antioxidante en lechuga. Terra Latinoam. 40(1):1-7.

Rawat, M.; Nayan, R.; Negi, B.; Zaidi, M. G. H. and Arora, S. 2017. Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. Juncea. Plant Physiol. Biochem. 118(1):274-284. DOI: https://doi.org/10.1016/j.plaphy.2017.06.021

Rui, M. Ma, C. Hao, Y. Guo, J. Rui, Y. Tang, X. and Sperotto, R. A. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers Plant Sci. 7(9):1-10. DOI: https://doi.org/10.3389/fpls.2016.00815

Sega, D.; Ciuffreda, G.; Mariotto, G.; Baldan, B.; Zamboni, A. and Varanini, Z. 2019. FePO4 nanoparticles produced by an industrially scalable continuous-flow method are an available form of P and Fe for cucumber and maize plants. Scientific Reports. 9(1):1-13.

Shakoor, N.; Adeel, M.; Zain, M.; Zhang, P.; Arslan, M.; Farooq, T.; Zhou, P.; Azeem, I.; Rizwan, M.; Guo, K.; Jilani, G.; Ahmar, S.; Maqbool, S. and Ming, X. 2022. Iron-based nanoparticles enhances its nutritional quality by trigging the essential elements. NanoImpact. 25(1):100388-100393.

Shang, F. F.; Zhao, X. P.; Chang, W. U.; Li, Y. W. U.; Hou, Q. and Wang, Q. 2013. Effects of chlorpyrifos stress on soluble proteins and some related metabolic enzyme activities in different crops. J. China Agricultural University. 18(4):105-110.

Singleton, V. L.; Orthofer, R. and Lamuela, R. R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299(14):152-178. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1

Steiner, A. A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil. 15(1):134-154. DOI: https://doi.org/10.1007/BF01347224

Tripathi, A. and Mishra, S. 2020. An estimation of price effects of making food fortification mandatory in India. Food and Nutrition Bulletin. 41(3):355-366.

Valencia, R. T.; Acosta, L. S.; Hernández, M. F.; Rangel, P. P.; Robles, M. Á. G., Cruz, R. C. A. and Vázquez, C. V. 2018. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber fruit. Agronomy. 8(11):1-13.

Wang, J.; Ren, T.; Wang, F.; Han, Y.; Liao, M.; Jiang, Z. and Liu, H. 2016. Effects of dietary cadmium on growth, antioxidants and bioaccumulation of sea cucumber (Apostichopus japonicus) and influence of dietary vitamin C supplementation. Ecotoxicol. Environ. Safety. 129(1):145-153. DOI: https://doi.org/10.1016/j.ecoenv.2016.01.029

Wang, X. P.; Li, Q. Q.; Pei, Z. M. and Wang, S. C. 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum. 62(4):801-808.

Wang, Y.; Wang, S.; Xu, M.; Xiao, L.; Dai, Z. and Li, J. 2019. The impacts of g -Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ. Pollution. 249(1):1011-1018.

Xiong, T.; Dumat, C.; Dappe, V.; Vezin, H.; Schreck, E.; Shahid, M. and Sobanska, S. 2017. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ. Sci. Technol. 51(9):5242-5251. DOI: https://doi.org/10.1021/acs.est.6b05546

Yuan, J.; Chen, Y.; Li, H.; Lu, J.; Zhao, H.; Liu, M. and Glushchenko, N. N. 2018. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Scientific Reports. 8(1):1-9. DOI: https://doi.org/10.1038/s41598-017-18055-w

Yusefi, T. E.; Fallah, S.; Rostamnejadi, A. and Pokhrel, L. R. 2020. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environment. 738(1):140240-140259.

Zhou, Z. D. and Tan, E. K. 2017. Iron regulatory protein (IRP) iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Molecular Neurodegeneration. 12(1):1-12. DOI: https://doi.org/10.1186/s13024-017-0218-4

Publicado

2022-09-22

Cómo citar

Guillén-Enríquez, Reyna Roxana, Lamberto Zuñiga-Estrada, Damaris Leopoldina Ojeda-Barrios, Tomas Rivas-García, Radamés Trejo-Valencia, y Pablo Preciado-Rangel. 2022. «Efecto De La nanobiofortificación Con Hierro En El Rendimiento Y Compuestos Bioactivos En Pepino». Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:173-84. https://doi.org/10.29312/remexca.v13i28.3272.

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>