Phosphorus and Bacillus subtilis in absorption and removal of micronutrients in Phaseolus vulgaris L.

Authors

  • Jesús del Rosario Ruelas-Islas Faculty of Agriculture of Valle del Fuerte-Autonomous University of Sinaloa. 16th Street and Japaraqui Av., Juan José Ríos, Ahome, Sinaloa, Mexico. ZC. 81110. Tel. 687 1387525
  • Celia Selene Romero-Félix Faculty of Agriculture of Valle del Fuerte-Autonomous University of Sinaloa. 16th Street and Japaraqui Av., Juan José Ríos, Ahome, Sinaloa, Mexico. ZC. 81110. Tel. 687 1387525
  • Cándido Mendoza-Pérez Hydrosciences-Postgraduate College. Mexico-Texcoco Highway km 36.5, Montecillo, Texcoco, Mexico. ZC. 56230. Tel. 55 13528662
  • Fidel Núñez-Ramírez Institute of Agricultural Sciences-Autonomous University of Baja California. Highway to Delta s/n, ejido Nuevo León, Mexicali, Baja California, Mexico. ZC. 21705. Tel. 653 1160600
  • Jessica Janeth Rocha Santillano National Technological Institute of Mexico-Campus Technological Institute of Torreón. Old Torreón-San Pedro highway km 7.5, Torreón, Coahuila, Mexico
  • Quintín Armando Ayala-Armenta Faculty of Agriculture of Valle del Fuerte-Autonomous University of Sinaloa. 16th Street and Japaraqui Av., Juan José Ríos, Ahome, Sinaloa, Mexico. ZC. 81110. Tel. 687 1387525

DOI:

https://doi.org/10.29312/remexca.v13i28.3279

Keywords:

extraction, fertilization, grow, inoculant

Abstract

Common bean (Phaseolus vulgaris L.) is a very important legume that is part of the diet in Latin America and other countries. In northern Sinaloa, Mexico, the yield of this crop is mainly affected by management practices (irrigation and fertilization dose) and variability in climate. An experiment was established in the Fuerte Valley, north of Sinaloa, Mexico, with the purpose of researching the response of bean culture to different doses of phosphorus [(P) (0, 25, 50, 100 kg ha-1 P2O5)] and the influence of the Bacillus subtilis Q11 (Bs) strain on the absorption and removal of micronutrients. The experiment consisted of plots divided into randomized complete blocks with three repetitions. According to the results obtained, the doses of P significantly influenced the absorption of micronutrients in the following preferential order Fe> Mn> Zn> B> Cu. While inoculation with Bs increased the absorption process with respect to non-inoculated plants.

Downloads

Download data is not yet available.

References

Ahemad, M.; Khan. M. S.; Zaidi, A. and Wani, P. A. 2009. Remediation of herbicides contaminated soil-using microbes. Microbes in Sustainable Agriculture. 261(5):1-84.

Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud University Science. 26(1):1-20. DOI: https://doi.org/10.1016/j.jksus.2013.05.001

Amare, G.; Assaye, D. and Tuma, A. 2014. The response of haricot bean varieties to different rates of phosphorus at Arba-Minch, Southern Ethiopia. ARPN J. Agric. Biol. Sci. 9(10):344-350.

Amanullah, M. A.; Almas, L. K.; Amanullah, J. Z. S.; Hidayatur, R. and Shad, K. K. 2012. Agronomic efficiency and profitability of fertilizers applied at different planting densities of maize in Northwest Pakistan. J. Plant Nutr. 35(3):331-341. DOI: https://doi.org/10.1080/01904167.2012.639916

Armada, E.; Roldan, A. and Azcon, R. 2014. Differential activity of autochthonous bacteria in controlling drought stress in native lavandula and salvia plants species under drought conditions in natural arid soil. Microbial Ecol. 67(2):410-420. https://doi: 10.1007/s00248-013-0326-9. DOI: https://doi.org/10.1007/s00248-013-0326-9

Astudillo, C. y Blair, M. 2008. Contenido de hierro y cinc en la semilla y su respuesta al nivel de fertilización con fósforo en 40 variedades de frijol colombianas. Agron. Colomb. 26(3):471-476.

Bender, R. R.; Haegele, J. W. and Below, F. E. 2015. Nutrient uptake, partitioning and remobilization in modern soybean varieties. Agron. J. 107(2):563-573. https://doi.org/10. 2134/agronj14.0435. DOI: https://doi.org/10.2134/agronj14.0435

Compant, S.; Clément, C. and Sessitsch, A. 2010. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42(5):669-678. https://doi.org/10.1016/j.soilbio.2009. 11.024. DOI: https://doi.org/10.1016/j.soilbio.2009.11.024

Chaudhary, M. I.; Adu-Gyamfi, J. J.; Saneoka, H.; Nguyen, N. T.; Suwa, R.; Kanai, S.; El-Shemy, H. A.; Lightfoot, D. A. and Fujita, K. 2008. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiologiae Plantarum. 30(4):537-544. https://doi.org/10.1007/s11738-008-0152-8. DOI: https://doi.org/10.1007/s11738-008-0152-8

Dehner, C. A.; Awaya, J. D.; Maurice, P. A. and DuBois, J. L. 2010. Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium Pseudomonas mendocina. Apply Environ. Microbiol. 76(7):2041-2048. https://doi.org/10.1128/aem. 02349-09. DOI: https://doi.org/10.1128/AEM.02349-09

Delfini, J.; Moda-Cirino, V.; dos Santos, N. J.; Buratto, J. S.; Ruas, P. M. and Azeredo, G. L. S. 2020. Diversity of nutritional content in seeds of Brazilian common bean germplasm. PLoS ONE. 15(9):1-13. https://doi.org/10.1371/journal.pone.0239263.

Domínguez, V. A. 1997. Tratado de fertilización. 3ra. Ed. Ediciones Mundi-Prensa. 143 p.

Fageria, N. K.; Baligar, V. C. and Clark, R. B. 2002. Micronutrients in crop production. Advances in Agronomy. 77(1):189-272. https://doi.org/10.1016/S0065-2113(02)77015-6. DOI: https://doi.org/10.1016/S0065-2113(02)77015-6

García, F. P.; Menéndez, E. and Rivas, R. 2015. Role of bacterial biofertilizers in agriculture and forestry. Bioengineering. 2(3):183-205. doi: 10.3934/bioeng.2015.3.183. DOI: https://doi.org/10.3934/bioeng.2015.3.183

Havlin, J. L.; Beaton, J. D.; Tisdale, S. L. and Nelson, W. L. 2005. Soil Fertility and Fertilizers. An Introduction to Nutrient Management, 7th Ed. Pearson Prentice Hall, Upper Saddle River, NJ. 244-289 pp.

Hidayatullah, A.; Amanullah, A. and Shah, Z. 2013. Residual effect of organic nitrogen sources applied to rice on the subsequent wheat crop. Inter. J. Agron. Plant Produc. 4(4):620-631.

Indiragandhi, P.; Anandham, R.; Madhaiyan, M. and Sa, T. M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology. 56(1):327-333. https://doi.org/ 10.1007/s00284-007-9086-4. DOI: https://doi.org/10.1007/s00284-007-9086-4

Iqbal, A.; Amanullah, A. and Iqbal, M. 2015. Impact of potassium rates and their application time on dry matter partitioning, biomass and harvest index of maize (Zea mays) with and without cattle dung application. Emirate’s J. Food Agric. 27(5):447-453. https://doi.org/10.9755/ ejfa.2015.04.042. DOI: https://doi.org/10.9755/ejfa.2015.04.042

Jalal, A.; Galindo, F. S.; Boleta, E. H. M.; Oliveira, C. E.; Reis, A. R. D.; Nogueira, T. A. R.; Moretti, N. M. J.; Mortinho, E. S.; Fernandes, G. C. and Teixeira, F. M. C. M. 2021. Common bean yield and zinc use efficiency in association with diazotrophic bacteria co-inoculations. Agronomy. 11(5):1-20. https://doi.org/10.3390/ agronomy11050959.

Joshi, A. K.; Crossa, J.; Arun, B.; Chand, R.; Trethowan, R.; Vargas, M. and Ortiz, M. I. 2010. Genotype × Environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Research. 116(3):268-277. https://doi.org/10. 1016/j.fcr.2010.01.004. DOI: https://doi.org/10.1016/j.fcr.2010.01.004

Khan, M. S.; Zaidi, A.; Wani, P. A. and Oves, O. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Letters. 7(1):1-19. https://doi.org/10.1007/s10311-008-0155-0. DOI: https://doi.org/10.1007/s10311-008-0155-0

Lima, R. T.; Nascimento, V. and Andreani, J. R. 2016. Densidade de plantas e fontes de nitrogênio no cultivo de feijoeiro. Brazilian J. Biosys. Eng. 10(3):327-338. https://doi.org/10.18011/ bioeng2016v10n3p327-338. DOI: https://doi.org/10.18011/bioeng2016v10n3p327-338

Minitab. 2017. Statistical software. PA: Minitab, Inc.

Mune, M. A.; Minkaa, M. R. and Mbombeb, I. L. 2013. Chemical composition and nutritional evaluation of a cowpea protein concentrate. Global Adv. Res. J. Food Sci. Technol. 2(3):35-43.

Mweetwa, A. M.; Chilombo, G. and Gondwe, B. M. 2016. Nodulation, nutrient uptake and yield of common bean inoculated with Rhizobia and Trichoderma in an acid soil. J. Agric. Sci. 8(12):61-70. https://doi.org/10.5539/jas.v8n12p61. DOI: https://doi.org/10.5539/jas.v8n12p61

Mumtaz, M. Z.; Ahmad, M.; Jamil, M.; Asad, S. A. and Hafeez, F. 2018. Bacillus strains as potential alternate for zinc biofortification of maize grains. Inter. J. Agric. Biol. 20(8):1779-1786. https://doi.org/10.17957/ijab/15.0690.

Neubauer, U.; Furrer, G.; Kayser, A. and Schulin, R. 2000. Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Inter. J. Phytoremediation. 2(4):353-368. https://doi.org/10.1080/15226510008500044. DOI: https://doi.org/10.1080/15226510008500044

NOM-021-RECNAT. 2000. Norma Oficial Mexicana. Aprobada por el comité consultivo nacional de normalización para la conservación, protección, restauración y aprovechamiento de los recursos forestales de suelos y costas. Norma Oficial Mexicana. 227 p.

Ndakidemi, P. A.; Bambara, S. and Makoi, J. 2011. Micronutrient uptake in common bean (Phaseolus vulgaris L.) as affected by Rhizobium inoculation, and the supply of molybdenum and lime. Plant Omics J. 4(1):40-52. https://doi.org/abs/10.3316.

Qiao, J.; Xiang; Y.; Xuejie, L.; Yongfeng, L.; Borriss, B. and Liu, L. 2017. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiology. 17(1):1-12. https://doi.org/10. 1186/s12866-017-1039-x. DOI: https://doi.org/10.1186/s12866-017-1039-x

Rengel, Z.; Batten, G. D. and Crowley, D. E. 1999. Agronomic approaches for improving the micronutrient density in edible portion of field crops. Field Crops Res. 60(1-2):27-40. https://doi.org/10.1016/S0378-4290(98)00131-2. DOI: https://doi.org/10.1016/S0378-4290(98)00131-2

SIAP. 2013. Servicio de Información Agroalimentaria y Pesquera. www. siap.gob.mx.

Shanka, D.; Dechassa, N.; Gebeyehu, S. and Elias, E. 2018. Dry matter yield and nodulation of common bean as influenced by phosphorus, lime and compost application at southern Ethiopia. Open Agriculture. 3(1):500-509. https://doi.org/10.1515/opag-2018-0055. DOI: https://doi.org/10.1515/opag-2018-0055

Sifuentes, I. E.; Macías, C. J.; Quintana, J. and González, C. V. 2012. IrriModel 1.0: Programación integral y gestión del riego a través de internet. Folleto técnico. INIFAP-CIRNO-CEVAF. 52 p.

Sridevi, M.; Mallaiah, K. V. and Yadav, N. C. S. 2007. Phosphate solubilization by Rhizobium isolates from Crotalaria species. Journal of Plant Science. 2(6):635-639. DOI: https://doi.org/10.3923/jps.2007.635.639

Stajkovic, O.; Delic, D.; Josic, D.; Kuzmanovic, D.; Rasulic, N. and Vukcevic, J. K. 2011. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Romanian Biotechnological Letters. 16(1):5919-5926.

Talaat, N. B.; Ghoniem, A. E.; Abdelhamid, M. T. and Bahaa, T. S. 2015. Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul. 75(1):281-295. https://doi.org/10.1007/s10725-014-9952-6 DOI: https://doi.org/10.1007/s10725-014-9952-6

Tofiño, R. A. P.; Pastrana, V. I. J.; Melo, R. A. E.; Beebe, S. y Tofiño, R. R. 2016. Rendimiento, estabilidad fenotípica y contenido de micronutrientes de genotipos de fríjol biofortificado en el Caribe seco colombiano. Corpoica. Ciencia Tecnología Agropecuaria. 17(3):309-329. https://doi.org/10.21930/rcta.vol17-num3-art:511. DOI: https://doi.org/10.21930/rcta.vol17_num3_art:511

Velu, G.; Ortiz, M. I.; Cakmak, I.; Hao, Y. and Singh, R. P. 2014. Bio-fortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 59(3):365-372. doi.org/10.1016/j.jcs.2013.09.001. DOI: https://doi.org/10.1016/j.jcs.2013.09.001

Westermann, D. T.; Teran, H. X.; Muñoz, P. C. G. and Singh, S. P. 2011. Plant and seed nutrient uptake in common bean in seven organic and conventional production systems. Canadian J. Plant Sci. 91(6):1089-1099. https://doi.org/10.4141/cjps10114. DOI: https://doi.org/10.4141/cjps10114

Published

2022-09-22

How to Cite

Ruelas-Islas, Jesús del Rosario, Celia Selene Romero-Félix, Cándido Mendoza-Pérez, Fidel Núñez-Ramírez, Jessica Janeth Rocha Santillano, and Quintín Armando Ayala-Armenta. 2022. “Phosphorus and Bacillus Subtilis in Absorption and Removal of Micronutrients in Phaseolus Vulgaris L”. Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:243-52. https://doi.org/10.29312/remexca.v13i28.3279.

Issue

Section

Articles

Most read articles by the same author(s)