Evaluation of bioreactors with and without air injection for the micropropagation of Vanilla planifolia G. Jackson

Authors

  • Clara Anabel Arredondo-Ramírez Postgrado de Recursos Genéticos y Productividad-Fruticultura-Campus Montecillo-Colegio de Postgraduados. Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco, Estado de México México. CP. 56230. Tel. 55 58045900
  • Gregorio Arellano-Ostoa Postgrado de Recursos Genéticos y Productividad-Fruticultura-Campus Montecillo-Colegio de Postgraduados. Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco, Estado de México México. CP. 56230. Tel. 55 58045900
  • Sergio Humberto Chávez-Franco Postgrado de Recursos Genéticos y Productividad-Fruticultura-Campus Montecillo-Colegio de Postgraduados. Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco, Estado de México México. CP. 56230. Tel. 55 58045900
  • Eduardo García-Villanueva Postgrado de Recursos Genéticos y Productividad-Fruticultura-Campus Montecillo-Colegio de Postgraduados. Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco, Estado de México México. CP. 56230. Tel. 55 58045900
  • María del Carmen López-Reyna Postgrado en Socioeconomía, Estadística e Informática-Economía. Campus Montecillo-Colegio de Postgraduados. Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. Tel. 55 58045900
  • José Humberto Caamal-Velázquez Bioprospección y Sustentabilidad Agrícola en Trópico-Campus Campeche-Colegio de Postgraduados. Carretera Haltunchén-Edzná, Champotón, Campeche. México. CP. 24450

DOI:

https://doi.org/10.29312/remexca.v16i6.3804

Keywords:

liquid media, mechanical, micropropagation, Rita®, vanilla

Abstract

The species Vanilla planifolia G. Jackson has a high commercial value in the food, pharmaceutical and cosmetic industries. Temporary immersion systems or bioreactors allow for faster and more controlled in vitro propagation under laboratory conditions. Nonetheless, due to the high costs of commercial bioreactors, such as the Rita® model, one of the most widely used for the micropropagation of several plant species, cheaper alternatives are sought. In vitro multiplication of vanilla was carried out in two types of temporary immersion bioreactors in order to evaluate the efficiency of a mechanical bioreactor without air injection compared to a Rita® bioreactor that uses air injection; the research was conducted between 2023 and 2024. The semi-solid culture system was used as a control. After 30 days of culture, the following physiological variables were analyzed: number of shoots, number of leaves, shoot length, and growth index; likewise, biochemical variables, such as total contents of chlorophylls α and β and phenol and carbohydrate contents, were quantified. The results obtained indicated that the BWA bioreactor was statistically equal (p≤ 0.05) to the Rita® bioreactor in the variables of number and length of shoots. Both were statistically different (p≤ 0.05) from the semi-solid system in most of the variables assessed. This suggests that the use of a mechanical bioreactor without air injection can be used as an alternative for the micropropagation of various species due to its low cost.

Downloads

Download data is not yet available.

References

Aragón, C. E.; Escalona, M.; Capote, I.; Pina, D.; Cejas, I.; Rodríguez, R.; Jesús-Cañal, M.; Sandoval, J.; Roels, S.; Debergh, P. and González-Olmedo, J. 2005. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitro Cellular & Developmental Biology-Plant. 41(4):550-554. https://doi.org/10.1079/IVP2005640.

Arencibia, A. D.; Vergara, C.; Quiroz, K.; Carrasco, B.; Bravo, C. and Garcia-Gonzales, R. 2013. an approach for micropropagation of blueberry (Vaccinium corymbosum L.) plants mediated by temporary immersion bioreactors (TIBs). American Journal of Plant Sciences. 4(5):1022-1028. https://doi.org/10.4236/ajps.2013.45126.

Debabrata, S.; Ramesh, C. and Prakash, S. N. 1997. Effect of inoculation density on potato micropropagation. Plant Cell, Tissue and Organ Culture. 48(1):63-66.

Dewir, D. H.; Chakrabarty, D.; Hahn, D. and Paek, E. J. 2006. A simple method for masspropagation of Spathiphylium cannifolium using an airlift bioreactor. In vitro Cellular & Developmental Biology-Plant. 42(3):291-297.

Escalona, M.; Lorenzo, J. C.; González, B.; Daquinta, M.; Gonzalez, J. L.; Desjardins, Y. and Borroto, C. G. 1999. Pineapple (Ananas comosus L. Merr.) micropropagation in temporary immersion systems. Plant Cell Reports. 18(9):743-748. https://doi.org/10.1007/s002990050653.

Escalona, M.; Samson, G.; Borroto, C. and Desjardins, Y. 2003. Physiology of effects of temporary immersion bioreactors on micro propagated pineapple plantlets. In vitro Cellular & Developmental Biology Plant. 39(6):651-656. https://doi.org/10.1079/IVP2003473.

Etienne, H. and Berthouly, M. 2002. Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture. 69:215-231.

Etienne, H.; Lartaud, M.; Michaux-Ferriere, N.; Carron, M. E.; Berthouly, M. and Teisson, A. 1997. Improvement of somatic embryogenesis in Hevea brasiliensis (Mt) ll. Arg.) using the temporary immersion technique. In vitro Cellular & Developmental Biology- Plant. 33(2):81-87.

Gao, J. and Lee, J. M. 1992. Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biotechnology Progress. 8(4):285-290. https://doi.org/10.1021/bp00016a004.

Georgiev, V.; Schumann, A.; Pavlov, A. and Bley, T. 2014. Temporary immersion systems in plant biotechnology. Engineering in Life Sciences. 14(6):607-621. https://doi.org/10.1002/elsc.201300166.

Hahn, E. J. and Paek, K. Y. 2005. Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. Plant Cell, Tissue and Organ Culture. 81(3):301-306. https://doi.org/10.1007/s11240-004-6655-0.

Jin, M. Y.; Piao, X. C.; Xiu, J. R.; Park, S. Y. and Lian, M. L. 2013. Micropropagation using a bioreactor system and subsequent acclimatization of grape rootstock ‘5BB’. Scientia Horticulturae. 164:35-40. https://doi.org/10.1016/j.scienta.2013.09.004.

Jova, M. C.; Kosky, R. G. and Cuellar, E. E. 2011. Effect of liquid media culture systems on yam plant growth (Dioscorea alata L. Pacala Duclos). Biotechnology, Agronomy, Society and Environment. 15(4):515-521.

Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer and Roland Douce. Methods in Enzymology, Plant Cell Membranes. 148:350-382. Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1.

Lotfi, M. and Werbrouck, S. P. O. 2020. SETISTM, a novel variant within the temporary immersion bioreactors. Acta Horticulturae. 30(1285):253-258. https://doi.org/10.17660/ActaHortic.2020.1285.37.

Murashige, T. and Skoog, F. 1962. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 15(3):473-497. https://doi:10.1111/j.1399-3054.1962.tb08052.x.

Robert, M. L.; Herrera-Herrera, J. L.; Herrera-Herrera, G.; Herrera-Alamillo, M. Á. and Fuentes-Carrillo, P. 2006. A new temporary immersion bioreactor system for micropropagation. In: Loyola-Vargas, V. M. and Vázquez-Flota, F. Methods in Molecular Biology. 318(2):121-130. Humana Press. https://doi.org/10.1385/1-59259-959-1:121.

Roels, S.; Escalona, M.; Cejas, I.; Noceda, C.; Rodriguez, R.; Canal, M. J.; Sandoval, J. and Debergh, P. 2005. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tissue and Organ Culture. 82(1):57-66. https://doi.org/10.1007/s11240-004-6746-y.

Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 82(1):57-66. https://doi.org/10.1007/s11240-004-6746-y.

Trauger, M.; Hile, A.; Sreenivas, K.; Shouse, E. M.; Bhatt, J.; Lai, T.; Mohandass, R.; Tripathi, L.; Ogden, A. J. and Curtis, W. R. 2022. CO2 supplementation eliminates sugar-rich media requirement for plant propagation using a simple inexpensive temporary immersion photobioreactor. Plant Cell, Tissue and Organ Culture (PCTOC). 150(1):57-71. https://doi.org/10.1007/s11240-021-02210-3.

Whitman, F. H.; Blaydes, D. F. and Devlin, R. M. 1971. Experiments in plant physiology. Monograph Wageningen University, Ed. Van Nostrand Rteinhold. New York. 245 p.

Wu, H. C.; Kuo, M. L. and Chen, C. M. 2018. Promotion of vegetative growth in force-ventilated Protea Cynaroides L. explants cultured in modified temporary immersion culture vessels. HortScience. 53(2):231-235. https://doi.org/10.21273/hortsci12513-17.

Wu, S. Q.; Lian, M. L.; Gao, R.; Park, S. Y. and Piao, X. C. 2011. Bioreactor application on adventitious root culture of Astragalus membranaceus. In vitro Cellular & Developmental Biology- Plant. 47(6):719-724. https://doi.org/10.1007/s11627-011-9376-1.

Published

2025-10-07

How to Cite

Arredondo-Ramírez, Clara Anabel, Gregorio Arellano-Ostoa, Sergio Humberto Chávez-Franco, Eduardo García-Villanueva, María del Carmen López-Reyna, and José Humberto Caamal-Velázquez. 2025. “Evaluation of Bioreactors With and Without Air Injection for the Micropropagation of Vanilla Planifolia G. Jackson”. Revista Mexicana De Ciencias Agrícolas 16 (6). México, ME:e3804. https://doi.org/10.29312/remexca.v16i6.3804.

Issue

Section

Articles

Most read articles by the same author(s)