Evaluation of selected papaya lines for the preservation of desirable traits

Authors

  • Juan Carlos Álvarez-Hernández Campo Experimental Valle de Apatzingán-INIFAP. Carretera Apatzingán-Cuatro Caminos km 17.5, Antúnez, Parácuaro, Michoacán, México. CP. 60781
  • Carlos Román Castillo-Martínez Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales-INIFAP. Av. Progreso Núm. 5, Colonia Barrio de Santa Catarina, Delegación Coyoacán. Ciudad de México, México. CP. 04010
  • Maricela Apaez-Barrios Facultad de Ciencias Agropecuarias-UMSNH. Mariano Jiménez S/N, colonia El Varillero, Apatzingán, Michoacán, México. CP. 60670

DOI:

https://doi.org/10.29312/remexca.v15i5.3723

Keywords:

Carica papaya, hermaphrodite, ‘maradol’ genotype, plant sexing

Abstract

There are currently few varieties of papaya in Mexico and the dominant one is ‘Maradol’, which over time has been vulnerable. Nonetheless, developing varieties for seed production is challenging. The objective was to evaluate outstanding and adapted papaya lines for the conservation of desirable traits. In the field, 23 lines of the ‘Maradol’ type were evaluated in Antúnez Michoacán, Mexico, in 2022. Initially, plant height, stem circumference, number of leaves and height to first fruit were recorded. During plant development, outstanding plants were identified and their pollination was controlled. In developed fruits, polar and equatorial circumference, weight, width and firmness of the pulp, and soluble solids were recorded. The development of plants presented differences, whose variability between lines allowed the identification of morphological characteristics of interest. Only 10 lines had this condition. In pollination control, the number of fruits formed over the flower buds decreased and the fruits collected over the fruits formed decreased. The characterization of fruits, except for soluble solids, showed differences. Multivariate analysis indicated variability associated with each principal component. It is concluded that of 23 papaya lines, only 43.48% presented outstanding plants. Within the lines, between 5 and 10% of the plants were selected. In the pollination control, they tended to decreased among the stages since only 28% of fruits were obtained. The selected lines showed fruit variability.

Downloads

Download data is not yet available.

References

Aikpokpodion, P. O. 2012. Assessment of genetic diversity in horticultural and morphological traits among papaya (Carica papaya) accessions in Nigeria. Fruits. 67(3):173-187. https://doi.org/10.1051/fruits/2012011.

Álvarez, H. J. C. y Tapia, V. L. M. 2019. Selección de plantas de papaya sobresalientes en ambientes comerciales con fines de mejoramiento. Revista Mexicana de Ciencias Agrícolas. 23(esp):303-311. https://doi.org/10.29312/remexca.v0i23.2029.

Bhattacharya, J. and Khuspe, S. S. 2001. In vitro and in vivo germination of papaya (Carica papaya L.) seed. Scientia Horticulturae. 91(1-2):39-49.

Barbosa, C. D.; Viana, A. P.; Quital, S. S. R. and Pereira, M. G. 2011. Artificial neural network analysis of genetic diversity in Carica papaya L. Crop breeding and applied biotechnology. 11(3):224-231. https://doi.org/10.1590/S1984-70332011000300004.

Coria, A. V. M.; Álvarez, H. J. C.; Venegas, G. E. y Vidales F. I. 2017. Agenda técnica agrícola Michoacán. SAGARPA. COFUPRO. INIFAP. 270 p.

Damasceno, J. P. C.; Santana, P. T. N. and Gonzaga, P. M. 2018. Estimation of genetic parameters of flower anomalies in papaya. Crop breeding and applied biotechnology. 18(1):9-15. http://dx.doi.org/10.1590/1984-70332018v18n1a2.

FAOSTAT. 2021. Estadísticas de la producción mundial de papaya. https://www.fao.org/faostat/es/#data/QCL.

Hammer, Ø. 2018. PAST V. 3.2 Reference manual. Natural history museum, university of Oslo. 262 p.

Honoré, M. N.; Belmonte-Ureña, L. J.; Navarro-Velazco, A. and Camacho-Ferre, F. 2020. Effects of the size of papaya (Carica papaya L.) seedling with early determination of sex on the yield and the quality in a greenhouse cultivation in continental Europe. Scientia Horticulturae. 265(109218):1-9. https://doi.org/10.1016/j.scienta.2020.109218.

Karunamoorthi, K.; Kim, H. M.; Kaliyaperumal, J.; Jerome, X. and Jayarama, V. 2014. Papaya: a gifted nutraceutical plant a critical review of recent human health research. Tang Humanitas Medicine. 4(1):1-17. http://dx.doi.org/10.5667/tang.2013.0028.

Marin, S. L. D.; Pereira, M. G.; Amaral, A. T.; Martelleto, L. A. P. and Ide, C. D. 2006. Heterosis in papaya hybrids from partial diallel of ‘Solo’ and ‘Formosa’ parents. Crop breeding and applied biotechnology. 6(1):24-29. Doi: 10.12702/1984-7033.v06n01a04.

Nascimento, A. L.; Schmildt, O.; Ferreguetti, G. A.; Krause, W.; Alexandre, R. S.; Schmildt, E. R.; Cavatte, P. C. and Amarral, A. T. 2019. Inheritance of leaf color in papaya. Crop breeding and applied biotechnology. 19(2):161-168.

Nunes, L. L.; Santa-Catarina, R.; Brito, B. G.; Ribeiro, B. F.; Fiorio, V. J. C. and Gonzaga P. M. 2018. Adaptability and stability of papaya hybrids affected by production seasonality. Crop breeding and applied biotechnology. 18(4):357-364.

Oliveira, E. J.; Pereira, D. N. L. and Loyola, D. J. L. 2012. Selection of morpho agronomic descriptor for characterization of papaya cultivars. Euphytica. 185(2):253-265.

Ram, M. 2005. Papaya. Indian council of agricultural research, New Delhi. 1st. Ed. India. 189 p.

Santana, C. A. F.; Medeiros, A. E. F.; Schmildt, E. R.; Nogueira, C. A. y Schmildt, O. 2019. Advances observed in papaya tree propagation. Revista Brasileira de Fruticultura. 41(5):1-15. http://dx.doi.org /10.1590/0100-29452019036.

Saran, P. L.; Choudhary, R.; Solanki, I. S.; Patil, P. and Kumar, S. 2015. Genetic variability and relationship studies in new Indian papaya (Carica papaya L.) germplasm using mofphological and molecular markers. Turkish journal of agriculture and forestry. 39(2):310-321. Doi: 10.3906/tar-1409-148.

SAS Institute Inc. 2002. The SAS System for Windows 9.0. Cary, NC, USA. 421 p.

SIAP-SADER. 2023. Estadísticas de la producción nacional de papaya. https://nube.siap.gob.mx/avance-agricola/.

SIAP. 2017. Servicio de Información Agroalimentaria y Pesquera. Atlas agroalimentario. 1ra. Ed. Ciudad de México. 231 p.

Silva, C. A.; Nascimiento, A. L.; Pereira, F. J.; Schmildt, O.; Garcia, M. R.; Sobreira, A. R.; Ferregueti, G. A. and Romais, S. E. 2017. Genetic diversity among papaya accessions. African journal of agricultural. 12(23):2041-2048.

SNICS-SAGARPA. 2014. Regla para la calificación de semilla de papaya (Carica papaya L.). 23 p.

SNITT-SAGARPA. 2016. Agenda nacional de investigación, innovación y transferencia de tecnología agrícola 2016-2022. 1ra. Ed. México. 197 p.

Urasaki, N.; Tarora, K.; Shudo, A.; Ueno, H.; Tamaki, M.; Miyagi, N.; Adaniya, S. and Matsumura, H. 2012. Digital transcriptome analysis of putative sex determination genes in papaya (Carica papaya). 7(7):1-9. Doi: 10.1371/journal.pone.0040904.

Vivas, M.; Silveira, S. F.; Silva, V. J. M.; Dias, S. P. H.; Carvalho, M. B.; Daher, R. F.; Amaral, J. A. T. and Gonzaga, P. M. 2017. Phenotypic characterization of papaya genotypes to determine powdery mildew resistance. Crop breeding and applied biotechnology. 17(3):198-205. http://dx.doi.org/10.1590/1984-70332017v17n3a31.

Published

2024-07-30

How to Cite

Álvarez-Hernández, Juan Carlos, Carlos Román Castillo-Martínez, and Maricela Apaez-Barrios. 2024. “Evaluation of Selected Papaya Lines for the Preservation of Desirable Traits”. Revista Mexicana De Ciencias Agrícolas 15 (5). México, ME:e3723. https://doi.org/10.29312/remexca.v15i5.3723.

Issue

Section

Articles

Most read articles by the same author(s)