Digestibility of stover of local corn varieties from the Poblano-Tlaxcalteca highlands

Authors

  • Juan de Dios Guerrero-Rodríguez Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla # 205. Santiago Momoxpan, San Pedro Cholula, Puebla. CP. 72760. Tel. 222 2851442, ext. 2208
  • Faviola Muñoz-Tlahuiz Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla # 205. Santiago Momoxpan, San Pedro Cholula, Puebla. CP. 72760. Tel. 222 2851442, ext. 2208
  • Pedro Antonio López Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla # 205. Santiago Momoxpan, San Pedro Cholula, Puebla. CP. 72760. Tel. 222 2851442, ext. 2208
  • Higinio López-Sánchez Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla # 205. Santiago Momoxpan, San Pedro Cholula, Puebla. CP. 72760. Tel. 222 2851442, ext. 2208
  • J. Arahón Hernández Guzmán Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla # 205. Santiago Momoxpan, San Pedro Cholula, Puebla. CP. 72760. Tel. 222 2851442, ext. 2208
  • Abel Gil-Muñoz Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla # 205. Santiago Momoxpan, San Pedro Cholula, Puebla. CP. 72760. Tel. 222 2851442, ext. 2208

DOI:

https://doi.org/10.29312/remexca.v14i29.3527

Keywords:

High Valleys, landrace corns, nutritional value

Abstract

The quality of corn stover is an important aspect to improve its consumption in ruminants, and little is known about its variation in the diversity of varieties grown in the Mexican highlands. The objective was to know the quality of stover (leaf) in native populations of corn in two regions of the Poblano-Tlaxcalteca highlands. For each region, 144 cultivars were tested in two locations, of which 134 were native populations and six commercial cultivars recommended for temperate zones. In vitro digestibility, neutral detergent fiber, acid detergent fiber, earliness, and yield of forage and grain were quantified. The experimental design was a simple 12x12 lattice with two repetitions. In both regions, differences in digestibility (p< 0.01) were found between cultivars in an interval of 10 percentage units. The outstanding local varieties were those that presented the highest digestibility (62.8 and 57.7% averages per region), compared to the commercial cultivars (57.3 and 57.7%), a variable that was associated with lower concentrations of neutral detergent-insoluble fiber (68.8 and 75.7% vs 71.7 and 78.3%), mainly. Earliness, grain coloration, or grain yield were not associated with digestibility. In conclusion, there is diversity in the digestibility of the leaf in stover between cultivars; some local varieties had greater digestibility than the commercial hybrids tested. Differences in digestibility were related to differences in neutral detergent fiber concentration, where commercial varieties tended to be more fibrous. Some local varieties outstanding in digestibility had high production of grain and stover.

Downloads

Download data is not yet available.

References

ANKOM Technology. 2006. Operator’s manual fiber analyzer. Macedon, NY, USA.

Ayaşan, T.; Cetinkaya, N.; Aykanat, S. and Celik, C. 2020. Nutrient contents and in vitro digestibility of different parts of corn plant. S. Afr J Anim Sci. 50(2):302-309.

Bertoia, L. M.; Burak, R. and Torrecillas, M. 2002. Identifying inbred lines capable of improving ear and stover yield and quality of superior silage maize hybrids. Crop Sci. 42(2):365-372.

Buxton, D. R. 1996. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim Feed Sci Tech. 59(1-3):37-49. DOI: https://doi.org/10.1016/0377-8401(95)00885-3

Clarke, T.; Flinn, P. C. and McGowan, A. A. 1982. Low-cost pepsin-cellulase assays for prediction of digestibility of herbage. Grass Forage Sci. 37(2):147-150. DOI: https://doi.org/10.1111/j.1365-2494.1982.tb01590.x

Casler, M. D and Vogel, K. P. 1999. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 39(1):12-20. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900010003x

Dhillon, B. S.; Paul, C.; Zimmer, E.; Gurrath, P. A; Klein, D. and Pollmer, W. G. 1990. Variation and covariation in stover digestibility traits in diallel crosses of maize. Crop Sci. 30(4):931-936. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000040035x

Duvick, D. N. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86(1):83-145. DOI: https://doi.org/10.1016/S0065-2113(05)86002-X

Estrada-Flores, J. C.; González-Ronquillo, M.; Mould, F. L.; Arriaga-Jordán, C. M. and Castelán-Ortega, O. A. 2006. Chemical composition and fermentation characteristics of grain and different parts of the stover from maize land races harvested at different growing periods in two zones of central Mexico. Animal Sci. 82(6):845-852. DOI: https://doi.org/10.1017/ASC2006094

Ford, D.; Cocke, A.; Horton, L.; Fellner, M. and Van, V. E. 2018. Estimation, variation and importance of leaf curvature in Zea mays hybrids. Agr. Forest. Meteorol. 148(10):1598-1610. DOI: https://doi.org/10.1016/j.agrformet.2008.05.015

Gutierrez-Ornelas, E. and Klopfenstein, T. J. 1991. Changes in availability and nutritive value of different corn residue parts as affected by early and late grazing seasons. J Anim. Sci. 69(4):1741-1750. DOI: https://doi.org/10.2527/1991.6941741x

Hansey, C. N.; Lorenz, A. J. and de Leon, N. 2010. Cell wall composition and ruminant digestibility of various maize tissues across development. BioEnergy Res. 3(1):28-37. DOI: https://doi.org/10.1007/s12155-009-9068-4

Hansey, C. N. and de Leon N. 2011. Biomass yield and cell wall composition of corn with alternative morphologies planted at variable densities. Crop Sci. 51(3):1005-1015. DOI: https://doi.org/10.2135/cropsci2010.08.0490

INEGI. 2010. Compendio de información geográfica municipal 2010. Instituto Nacional de Estadística y Geografía.

Jones, D. I. H. and Hayward, M. V. 1975. The effect of pepsin pretreatment of herbage on the prediction of dry matter digestibility from solubility in fungal cellulase solutions. J. Sci. Food Agric. 26(5):711-718. DOI: https://doi.org/10.1002/jsfa.2740260518

Klein, L. and Baker, S. K. 1993. Composition of the fractions of dry, mature subterranean clover digested in vivo and in vitro. Ed. Proceedings of the 17 international grasslands congress. Palmerston north, New Zealand. 593-595 pp.

Krämer-Schmid, M.; Lund, P. and Weisbjerg, M. R. 2016. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows. Anim. Feed Sci. Tech. 219(1):68-76. DOI: https://doi.org/10.1016/j.anifeedsci.2016.06.007

Lewis, M. F.; Lorenzana, R. E.; Jung, H.-J. G. and Bernardo, R. 2010. Potential for simultaneous improvement of corn grain yield and stover quality for cellulosic ethanol. Crop Sci. 50(2):516-523. DOI: https://doi.org/10.2135/cropsci2009.03.0148

Lorenz, A. J.; Gustafson, T. J.; Coors, J. G. and de Leon, N. 2010. Breeding maize for a bioeconomy: A literature survey examining harvest index and stover yield and their relationship to grain yield. Crop Sci. 50(1):1-12. DOI: https://doi.org/10.2135/cropsci2009.02.0086

Lundvall, J. P.; Buxton, D. R.; Hallauer, A. R. and George, J. R. 1994. Forage quality variation among maize inbreds: In vitro digestibility and cell-wall components. Crop Sci. 34(6):1672-1678. DOI: https://doi.org/10.2135/cropsci1994.0011183X003400060046x

Martínez, G. A. 1989. Manual de diseño y análisis de los Látices. Centro de Estadística y Cálculo, Colegio de Postgraduados. Monografías y Manuales en Estadística y Cómputo. 8(3): 1-14.

Martínez-Loperena, R.; Castelán-Ortega, O. A.; González-Ronquillo, M. y Estrada-Flores, J. G. 2011. Determinación de la calidad nutritiva, fermentación in vitro y metabolitos secundarios en arvenses y rastrojo de maíz utilizados para la alimentación del ganado lechero. Trop. Subtrop. Agroecosy. 14(2):525-536.

Methu, J. N.; Owen, E.; Abate, A. L. and Tanner, J. C. 2001. Botanical and nutritional composition of maize stover, intakes and feed selection by dairy cattle. Livestock Prod Sci. 71(2-3):87-96. DOI: https://doi.org/10.1016/S0301-6226(01)00212-3

Muñoz-Tlahuiz, F.; Guerrero-Rodríguez, J. D.; López, P. A.; Gil-Muñoz, A.; López-Sánchez, H.; Ortiz-Torres, E.; Hernández-Guzmán, J. A; Taboada-Gaytán, O.; Vargas-López, S. and Valadez-Ramírez, M. 2013. Stover and grain production from maize landraces under rainfed conditions in the highland plateau of Libres-Serdán, Puebla, Mexico. Rev. Mex. Cienc. Pec. 4(4):515-530.

Mutsamba, E. F.; Nyagumbo, I. and Mupangwa, W. 2020. Forage and maize yields in mixed crop-livestock farming systems enhancing forage and maize yields in mixed crop-livestock systems under conservation agriculture in sub humid Zimbabwe. NJAS-Wageningen J. Life Sci. 92(10031):1-10.

Perez, R.; Fournier, C.; Cabrera, B. L.; Artzet, S.; Pradal, C. and Brichet, N. 2019. Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection. Plant Cell Environ. 42(7):2105-2119.

Polanco, J. A. y Flores, M. T. 2008. Bases para una política de innovación de la cadena de valor del maíz. Distrito federal, México: Foro Consultivo Científico y Tecnológico, AC. 11-19 pp.

Russell, J. R. 1986. Influence of harvest date on the nutritive value and ensiling characteristics of maize. Anim. Feed Sci. Tech. 14(1-2):11-27. DOI: https://doi.org/10.1016/0377-8401(86)90003-9

Santiago, L. U.; Rosales, N. C. A.; Santiago, L. E; Santiago, L. N.; Preciado, R. P.; Palomo, G. A. and Real, D. 2018. Yield of forage, grain and biomass in eight hybrids of maize with different sowing dates and environmental conditions. Rev. Mex. Cienc. Pec. 9(1):86-104. DOI: https://doi.org/10.22319/rmcp.v9i1.4403

SAS. 2008. User’s guide statistics (version 9.4). Ed. Cary, NC, USA: SAS Institute Inc.

Undi, M.; Kawonga, K. C. and Musendo, R. M. 2001. Nutritive value of maize stover/pasture legume mixtures as dry season supplementation for sheep. Small Rumin Res. 40(3):261-267. DOI: https://doi.org/10.1016/S0921-4488(01)00175-4

Xie, H. L.; Ji, H. Q.; Liu, Z. H.; Tian, G. W.; Wang, C. L.; Hu, Y. M. and Tang, J. H. 2009. Genetic basis of nutritional content of stover in maize under low nitrogen conditions. Euphytica. 165(3):485-493. DOI: https://doi.org/10.1007/s10681-008-9764-8

Published

2023-09-15

How to Cite

Guerrero-Rodríguez, Juan de Dios, Faviola Muñoz-Tlahuiz, Pedro Antonio López, Higinio López-Sánchez, J. Arahón Hernández Guzmán, and Abel Gil-Muñoz. 2023. “Digestibility of Stover of Local Corn Varieties from the Poblano-Tlaxcalteca Highlands”. Revista Mexicana De Ciencias Agrícolas 14 (29). México, ME:e3527. https://doi.org/10.29312/remexca.v14i29.3527.

Issue

Section

Articles

Most read articles by the same author(s)