Potassium acrylate to reduce water use in greenhouse tomato cultivation

Authors

  • Alicia García-Moreno Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez km 1.5 y Carretera a Santa Fe s/n, Torreón, Coahuila, México. CP. 27059 https://orcid.org/0000-0001-8858-0190
  • Pedro Cano-Ríos Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez km 1.5 y Carretera a Santa Fe s/n, Torreón, Coahuila, México. CP. 27059 https://orcid.org/0000-0003-4559-954X
  • Héctor Mario Quiroga-Garza Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez km 1.5 y Carretera a Santa Fe s/n, Torreón, Coahuila, México. CP. 27059 https://orcid.org/0000-0001-7118-1193
  • José de Jesús Espinoza-Arellano Facultad de Contaduría y Administración-Universidad-Autónoma de Coahuila-Unidad Torreón. Boulevard Revolución 153 oriente, Col. Centro, Torreón, Coahuila, México. CP. 27000 https://orcid.org/0000-0003-0858-3987
  • Rubí Muñoz-Soto Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez km 1.5 y Carretera a Santa Fe s/n, Torreón, Coahuila, México. CP. 27059 https://orcid.org/0000-0001-7451-7510
  • José Luis Reyes-Carrillo Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez km 1.5 y Carretera a Santa Fe s/n, Torreón, Coahuila, México. CP. 27059

DOI:

https://doi.org/10.29312/remexca.v15i4.3336

Keywords:

Solanum lycopersicum, hydrogel, substrates, water footprint

Abstract

Hydrogels are materials that absorb large amounts of water and have been used for horticultural purposes. This work aimed to make a technical and economic assessment of the use of potassium acrylate (PA) hydrogel to reduce water consumption in tomato cultivation by using three doses of PA (0, 3 and 6 g L-1 substrate), two substrates (sand and mixture: 50% sand - 40% compost - 10% perlite) and two varieties (Aquiles and Moctezuma). The experimental work was carried out in one of the greenhouses of the Antonio Narro Autonomous Agrarian University, Laguna Unit, in the city of Torreón, Coahuila, Mexico, during the spring-summer cycle of 2020. The experimental design was in randomized blocks, 12 treatments and four repetitions. The variables evaluated were: plant height, stem thickness, polar and equatorial diameter of the fruit, pulp thickness, number of locules, degrees Brix, yield, and water footprint. The economic analysis was based on the partial budget methodology proposed by the International Maize and Wheat Center for the analysis of experiments. No statistical differences were found in fruit quality. Yield increased with PA and the water footprint decreased. Marginal income (MgI) exceeded marginal cost (MgC) in the two doses of PA analyzed. PA saved water (20.1% and 21.1%) when incorporated into the substrate mixture, increased yield (25.1 t ha-1), improved income (MgI>MgC) and maintained fruit quality.

Downloads

Download data is not yet available.

Author Biographies

Alicia García-Moreno, Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez km 1.5 y Carretera a Santa Fe s/n, Torreón, Coahuila, México. CP. 27059

graduate student of the Agrarian Sciences Program

Pedro Cano-Ríos, Unidad Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez km 1.5 y Carretera a Santa Fe s/n, Torreón, Coahuila, México. CP. 27059

Horticulture Department-Universidad Autónoma Agraria Antonio Narro-Unidad Laguna

References

Abobatta, W. 2018. Impact of hydrogel polymer in agricultural sector. Advances in agriculture and environmental science. 1(2):59-64. Doi: 10.30881/aaeoa.00011.

Ahme, S. S. and Fahmy, A. H. 2019. Applications of natural polysaccharide polymers to overcome water scarcity on the yield and quality of tomato fruits. Journal of Soil Sciences and Agricultural Engineering Mansoura Univ. 10(4):199-208. Doi: 10.21608/JSSAE.2019.36727.

Ayas, S. 2019. Water-yield relationships of deficit irrigated tomato (Lycopersicon lycopersicum L. var. HazaR F1). Applied ecology and environmental research. 17(4):7765-7781. Doi:10.15666/aeer/1704-77657781.

Bernacchi, C. J. and VanLoocke, A. 2015. Terrestrial ecosystems in a changing environment: a dominant role for water. Annual Review of Plant Biology. 66:599-622. Doi: 10.1146/annurev-arplant-043014-114834.

CIMMYT. 1988. Centro Internacional de Mejoramiento de Maíz y Trigo. La formulación de recomendaciones a partir de datos agronómicos: un manual metodológico de evaluación económica. Ed. completamente revisada. El batán, estado de México. 79 p. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/1063/9031.pdf.

FAO. 2019. Food and Agriculture Organisation. Agua. http://www.fao.org/water/es.

Hoekstra, A. Y.; Chapagain, A. K.; Aldaya, M. M. and Mekonnen, M. M. 2011. The water footprint assessment manual: setting the global standard, Earthscan, London, UK. 203 p.

Krugman, P. R. y Wells, R. 2006. Introducción a la economía. Microeconomía. Ed. Reverté. Barcelona, España. 552 p.

Llanes, L.; Dubessay, P.; Pierre, G.; Delattre, C. and Michaud, P. 2020. Biosourced polysaccharide based superabsorbents. Polysaccharides. 1(1):51-79. ttps://doi.org/10.3390/polysaccharides1010005.

Mandal, U. K.; Sharma, K. L.; Venkanna, K.; Korwar, G. R.; Reddy, K. S.; Pushpanjali, P.; Reddy, N. N.; Govindarajan, D.; Masane, R. and Yadaiah P. 2015. Evaluating hydrogel application on soil water availability and crop productivity in semiarid tropical red soil. Indian journal of dryland agricultural research and development. 30(2):1-10. Doi:10.5958/2231-6701.2015.00018.4.

Montesano, F. F.; Parente, A.; Santamaria, P.; Sannino, A. and Serio, F. 2015. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agriculture and agricultural science procedia. 4:451-458. https://doi.org/10.1016/j.aaspro.2015.03.052.

Nassaj-Bokharaei, S.; Motesharezedeh, B.; Etesami, H. and Motamedi, E. 2021. Effect of hydrogel composite reinforced with natural char nanoparticles on improvement of soil biological properties and the growth of water deficit stressed tomato plant. Ecotoxicology and environmental safety. 223:1-11. Doi:10.1016/j.ecoenv.2021.112576.

Neethu, T. M.; Dubey, P. K. and Kaswala, A. R. 2018. Prospects and applications of hydrogel technology in agriculture. International Journal of Current Microbiology and Applied Sciences. 7(5):3155-3162. Doi: https://doi.org/10.20546/ijcmas.2018.705.369.

Nirmala, A. and Thirupathaiah, G. 2019. Hydrogel/superabsorbent polymer for water and nutrient management in horticultural crops review. International journal of chemical studies. 7(5):787-795. https://www.chemijournal.com/archives/?year=2019&vol=7&issue=5&ArticleId=7033&si=false.

Ortega-Torres, A. E.; Flores-Tejeida, L. B.; Guevara-González, R. G.; Rico-García, E. y Soto-Zarazúa, G. M. 2020. Hidrogel acrilato de potasio como sustrato en cultivo de pepino y jitomate. Revista Mexicana de Ciencias Agrícolas. 11(6):1447-1455. https://doi.org/10.29312/remexca.v11i6.2222.

Ramírez-Barraza, B. A.; González-Estrada, A.; Valdivia-Alcalá, R.; Salas González, J. M. y García-Salazar, J. A. 2019. Tarifas eficientes para el agua de uso agrícola en la Comarca Lagunera. Revista Mexicana de Ciencias Agrícolas. 10(3):539-550. Doi: https://doi.org/10.29312/remexca.v10i3.1295.

Ramos-Cruz, C. M.; Pérez-Evangelista, E. R.; Miguel-Valle, E.; Ramírez-Delgado, D. y Maltos-Buendía, J. 2018. Panorama de la situación del agua y la agricultura: Una revisión. Ciencia e innovación. 1:309-319.

Reddy, K. S.; Srinivas, K.; Reddy, A. G. K.; Sharma, K. L.; Indoria, A. K.; Reddy, K. S.; Grover, M. T.; Srinivas, B. and Venkateswarlu, B. 2015. Water absorption and release characteristics of a polymer and its effect on available water content, tomato (Lycopersicon esculentum) productivity and water use efficiency in a semi arid sandy loam soil. Journal of the Iindian Society of Soil Science. 63(4):384-393. Doi:10.5958/0974-0228.2015.00051.1.

Rivera-Fernández, R. D. y Gallo, F. M. 2018. Absorción de agua de hidrogel de uso agrícola y su humedecimiento de tres tipos de suelo. Universidad Nacional de Cuyo. Revista Facultad Ciencias Agrarias, 50(2):15-21. https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/2810.

SAS Institute Inc. 2002. Statistical Analysis System, versión 9.0, Cary, NC. USA.

SADER. 2020. Secretaría de agricultura y desarrollo rural. El jitomate, hortaliza mexicana de importancia mundial. https://www.gob.mx/agricultura/articulos/el-jitomate-hortaliza-mexicana-de-importancia-mundial?idiom=es.

SAGARPA. 2017. Secretaría de Agricultura Ganadería Desarrollo Rural Pesca y Alimentación. Planeación Agrícola Nacional 2017-2030 Jitomate Mexicano. https://www.gob.mx/agricultura/articulos/el-jitomate-hortaliza-mexicana-de-importancia-mundial?idiom=es.

SIAP. 2020. Servicio de Información Agroalimentaria y Pesquera. Anuario estadístico de la producción agrícola. https://nube.siap.gob.mx/cierreagricola.

Sobrinho, J. F. and Barbosa, F. E. L. 2020. Water absorption by hydrogel using fertilizers. Environment and Natural Resources Research. 10:26-32. Doi:10.5539/enrr.v10n2p26.

Stanghellini, C. 2014. Horticultural production in greenhouses: efficient use of water. acta horticulturae. 1034:25-32. Doi:10.17660/ActaHortic.2014.1034.1.

Published

2024-07-11

How to Cite

García-Moreno, Alicia, Pedro Cano-Ríos, Héctor Mario Quiroga-Garza, José de Jesús Espinoza-Arellano, Rubi Muñoz-Soto, and José Luis Reyes-Carrillo. 2024. “Potassium Acrylate to Reduce Water Use in Greenhouse Tomato Cultivation”. Revista Mexicana De Ciencias Agrícolas 15 (4). México, ME:e3336. https://doi.org/10.29312/remexca.v15i4.3336.

Issue

Section

Articles

Most read articles by the same author(s)