Tomato water consumption in the greenhouse according to the number of stems

Authors

  • Jesús del Rosario Ruelas-Islas Faculty of Agriculture of Valle del Fuerte-Autonomous University of Sinaloa. Street 16 s/n, Av. Japaraqui, Juan José Ríos, Ahome, Sinaloa. CP. 81110. Tel. 687 1387525
  • Juan Enrique Rubiños-Panta Hydrosciences-Postgraduate College. Mexico-Texcoco Highway km 36.5, Montecillo, Texcoco, State of Mexico. CP. 56230. Tel. 595 9520200
  • Luis Alberto Peinado-Fuentes Valle del Fuerte Experimental Field-INIFAP. Mexico-Nogales International Highway km 1609, Juan José Ríos, Sinaloa. CP. 81110. Tel. 55 38718700, ext. 81501
  • Cándido Mendoza-Pérez Hydrosciences-Postgraduate College. Mexico-Texcoco Highway km 36.5, Montecillo, Texcoco, State of Mexico. CP. 56230. Tel. 595 9520200
  • Antonio Martínez-Ruiz San Martinito Experimental Field-INIFAP. Mexico-Puebla Federal Highway km 56.5, Santa Rita, Tlahuapan, Puebla. CP. 74100. Tel. 55 38718700
  • Isabel Escobosa-García Institute of Agricultural Sciences-Autonomous University of Baja California. Highway to Delta s/n, ejido Nuevo Leon, Mexicali, Baja California. CP. 21705. Tel. 686 1936913.

DOI:

https://doi.org/10.29312/remexca.v13i28.3269

Keywords:

crop coefficient, leaf area index, irrigation requirement, protected agriculture

Abstract

The low availability of water observed in the country’s dams and the overexploitation of underground aquifers make it urgent to generate strategies to optimize this resource. One strategy is the optimization of irrigation by calculating water needs for irrigation scheduling. The objective of this study was to analyze the relationship between crop evapotranspiration (ETc) and crop coefficient (Kc) in tomato cultivation as a function of the number of stems, for the supply of irrigation water based on a drainage lysimeter and an atmometer. The work was carried out under controlled conditions using tezontle as a substrate and a drip irrigation system. The experiment consisted of three treatments, one (T1), two (T2) and three (T3) stems per plant. The drainage lysimeter method was used to measure daily crop transpiration (ETc) and an atmometer was used to estimate reference evapotranspiration (ETo). The accumulated transpiration of the crop was 352, 389 and 434 mm for T1, T2 and T3 and a Kc of 1.06, 1.16 and 1.32 for the same treatments, respectively, as well as the irrigation requirement of 1.04, 1.14 and 1.29 L plant-1, both parameters determined in the stage of maximum water and nutrient demand. It is concluded that the daily measurements of transpiration in tomato with the drainage lysimeter allow to reliably calculate the water requirement of crops, in addition, the atmometer is an alternative to estimate the ETo for irrigation scheduling purposes in different crops.

Downloads

Download data is not yet available.

References

Allen, R. G.; Pereira, L. S.; Raes, D. and Smith, M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirement. FAO irrigation and drainage paper 56. Food and Agriculture Organization of United Nations. Rome, Italy. 300 p.

Cerekovic, N.; Todorovic, M.; Snyder, R. L.; Boari, F.; Pace, B. and Cantore, V. 2010. Evaluation of the crop coefficients for tomato crop grown in a Mediterranean climate. In: López-Franco, A. (Comp.). Economics of drought and drought preparedness in a climate change context. Zaragoza. Options Méditerranéennes: Série A. Séminaires Méditerranéen. 2(95):91-94.

CONAGUA. 2019. Comisión Nacional del Agua. Estadísticas del agua en México. Gobierno de México. 261 p. http://sina.conagua.gob.mx/sina/index.php?publicaciones.

Dauda, K. A. and Olayaki, L. M. 2016. Determination of crop coefficients of three varieties of tomatoes. Inter. J. Res. Sci. Eng. Technol. 1(1):1-8.

Fernández, R. D.; Martínez, M. M.; Tavarez, E. C.; Castillo, V. R. y Salas, M. R. 2012. Estimación de las demandas de consumo de agua. Folleto técnico núm. 1. Colegio de Postgraduados. Montecillo, Estado de México. 33 p.

Flores, V. J.; Ojeda, B. W.; López, C. I.; Rojano, A. A. y Salazar, S. I. 2007. Requerimientos de riego para tomate de invernadero. Terra Latinoam. 25(2):127-134.

Hanson, B. and May, D. 2006. Evapotranspiration, yield, crop coefficients, and water use efficiency of drip and furrow irrigated processing tomatoes. WIT transactions on ecology and the environment. 96(6):31-35. DOI: https://doi.org/10.2495/SI060041

Jensen, M. E. and Wright, J. L. 1978. The role of evapotranspiration models in irrigation scheduling. Trans. ASAE. 21(1):82-87. DOI: https://doi.org/10.13031/2013.35255

López, L. R.; Arteaga, R. R.; Vázquez, P. M. A.; López, C. I. y Sánchez, C. I. 2010. Evapotranspiración del cultivo de tomate de cáscara (Physalis ixocarpa Brot.) estimada mediante el potencial mátrico del suelo. Rev. Fitotec. Mex. 33(2):157-168.

López, C. I. L.; Ruiz, G. A. y Martínez, R. A. 2017. Una comparación de los modelos VegSyst y mod-VegSyst para predecir la materia seca, la absorción de nitrógeno y la transpiración de los tomates cultivados en invernadero. Acta Hortic. 1227(32):265-272.

Martínez, R. A.; López, C. I. L.; Ruiz, G. A.; Pineda, P. P. and Prado, H. J. V. 2019. HortSyst: a dynamic model to predict growth, nitrogen uptake, and transpiration of greenhouse tomatoes. Chilean J. Agric. Res. 79(1):89-102.

Mendoza, P. C.; Ojeda, B. W.; Sifuentes, I. E.; Quevedo, N. A.; Flores, M. H.; Ramírez, A. C. y Ascencio, H. R. 2019. Estimación de la evapotranspiración de referencia por atmómetros con fines de calendarización de riego. Idesia. Rev. Agric. Zon. Árid. Semiár. 37(4):65-72.

Mendoza, P. C.; Ramírez, A. C.; Ojeda, B. W.; Trejo, L. C.; López, O. A.; Quevedo, N. A. and Martínez, R. A. 2018. Response of tomato (Solanum lycopersicum L.) to water consumption, leaf area and yield with respect to the number of stems in the greenhouse. Rev. Fac. Cienc. Agrar. 50(2):87-104.

Reis, L. S.; Azevedo, C. A. V.; Albuquerque, A. W. y Junior, J. F. S. 2013. Índice de área foliar e produtividade do tomate sob condições de ambiente protegido. Rev. Bras. Engenharia Agríc. Amb. 17(4):386-391. DOI: https://doi.org/10.1590/S1415-43662013000400005

Rodríguez, C. J.; Pérez, G. A.; Ortega, G. L. y Arteaga, B. A. 2020. Estudio hidrosostenible en el cultivo del tomate, su efecto en el rendimiento y calidad del fruto. Cultivos Tropicales. 41(2):1-16.

Rodríguez, J. R. y Pire, R. E. 2008. Evapotranspiración diaria del tomate determinada mediante un lisímetro de pesada. Agron. Trop. 58(1):73-76.

Soto, B. F. 2018. Parámetros para el manejo del agua en tomate y chile dulce hidropónico bajo invernadero. Agron. Costarricense. 42(2):59-73.

Steiner, A. A. 1984. The universal nutrient solution. Proc. 6th Int. Cong. Soilless culture. ISOSC. Lunteren, Holanda. 633-649 pp.

Vera, V. C.; Rázuri, R. L.; Rosales, D. J.; Jaimez, A. R. E.; Proaño, S. J. y Mora, A. M. 2014. Programación y manejo del riego localizado en invernadero mediante tres métodos de estimación de la evapotranspiración en el cultivo de pimiento (Capsicum annuum L.). Agric. Andina. 20(1):39-52.

Zamora, H. E. I.; Duarte, D. C. E.; Cun, G. R.; Pérez, H. R. y León, F. M. 2014. Coeficientes de cultivos (Kc) en Cuba. Ingeniería Agrícola. 4(3):16-22.

Published

2022-09-22

How to Cite

Ruelas-Islas, Jesús del Rosario, Juan Enrique Rubiños-Panta, Luis Alberto Peinado-Fuentes, Cándido Mendoza-Pérez, Antonio Martínez-Ruiz, and Isabel Escobosa-García. 2022. “Tomato Water Consumption in the Greenhouse According to the Number of Stems”. Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:137-47. https://doi.org/10.29312/remexca.v13i28.3269.

Issue

Section

Articles

Most read articles by the same author(s)