Yield and nutritional value of forage and silage of native corns in subtropical conditions

Authors

  • Santiago Joaquín Cancino Faculty of Engineering and Sciences-Autonomous University of Tamaulipas. Ciudad Victoria Tamaulipas, Mexico
  • Mario Rocandio Rodríguez Institute of Applied Ecology-Autonomous University of Tamaulipas. Ciudad Victoria, Tamaulipas, Mexico
  • Perpetuo Álvarez Vázquez Department of Renewable Resources-Autonomous Agrarian University Antonio Narro. Buenavista, Saltillo, Coahuila, Mexico
  • Filogonio Jesús Hernández Guzmán Polytechnic University of Francisco I. Madero. Francisco I. Madero, Hidalgo, Mexico
  • Andrés Gilberto Limas Martínez Faculty of Engineering and Sciences-Autonomous University of Tamaulipas. Ciudad Victoria Tamaulipas, Mexico
  • Jonathan Raúl Garay Martínez Campo Experimental Las Huastecas-INIFAP. Villa Cuauhtémoc, Altamira, Tamaulipas, México

DOI:

https://doi.org/10.29312/remexca.v13i5.3231

Keywords:

Zea mays, forage behavior, native corn

Abstract

The yield and nutritional value of forage and silage of native corns with forage potential in subtropical conditions were evaluated. The variables evaluated were yield (t ha-1) of total dry matter (TDM) and by component: leaf blade (LB), stem, bracts, green corn cob, panicle and sheath, SPAD units, leaf area index (LAI) and specific leaf area (SLA, cm2 g-1). In forage and silage, the contents (%) of crude protein (CP), ashes (AS), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were evaluated. The variables were analyzed with a randomized complete block design with three repetitions and the Tukey mean comparison test was applied (α= 0.05). The Tuxpeño Norteño × Ratón genotype had the highest values (p< 0.05) of TDM, LB and stem (10.66, 1.89 and 3.97 t ha-1, respectively), NDF (57.4%) and ADF (26.6%). While the V-402 genotype had the highest yield of green corn cobs (4.2 t ha-1). The CP content in silage was higher (p< 0.05) than in forage (8.2 and 7.8%, respectively). The Ratón × Tuxpeño genotype had the highest CP content in forage (8.6%), in contrast, Tuxpeño Norteño × Elotes Occidentales showed the highest CP content (8.7%) in silage. The Tuxpeño Norteño × Ratón genotype could be an alternative as forage due to the higher yield of total dry matter and nutritional value, desirable characteristics in forage corns.

Downloads

Download data is not yet available.

References

Amador, R. A. L. y Boschini, F. C. 2000. Fenología productiva y nutricional de maíz para la producción de forraje. Agron. Mesoam. 11(1):171-177. http://www.mag.go.cr/rev-meso/v11n01-171.pdf.

ANKOM. 2010. Ankom technology. Operator’s manual ‘Daisy’ incubator. Ankom technology, Macedon, NY, EUA. https://www.ankom.com/sites/default/files/document-files/Method-3-Invitro-D200-D200I.pdf.

Balseca-Guzmán, D. G.; Cienfuegos-Rivas, E. G.; López-Santillán, J. A.; Martínez-González, J. C.; Reyes-Méndez, C. A.; Rocandio-Rodríguez, M.; Hernández-Meléndez, J. and López-Aguirre, D. 2018. Forage yield and quality of yellow grain maize (Zea mays L.) cultivars at two population densities in the tropical region of Tamaulipas Mexico. Glob. Adv. Res. J. Agric. Sci. 7(4):130-136. http://garj.org/garjas/4/2018/7/4/forage-yield-and-quality-of-yellow-grain-maize-zea-mays-l-cultivars-at-two-population-densities-in-the-tropical-region-of-tamaulipas-mexico.

Camacho, R. G.; Garrido, O. y Lima, M. G. 1995. Caracterización de nueve genotipos de maíz (Zea mays L.) en relación a área foliar y coeficiente de extinción de luz. Sci. Agric. 52(2):294-298. https://doi.org/10.1590/S0103-90161995000200015. DOI: https://doi.org/10.1590/S0103-90161995000200015

Caravaca, F. P.; Castel, J. M.; Guzmán, J. L.; Delgado, M.; Mena, Y.; Alcalde, M. J. y González, P. 2005. Bases de la producción animal. Universidad de Sevilla. Sevilla. 512 p.

Carrera, C. B. y Bustamante, L. T. I. 2013. ¿Es la ganadería bovina de carne una actividad competitiva en México? Nóesis. 22(43):19-50. https://doi.org/10.20983/noesis.2013.1.1. DOI: https://doi.org/10.20983/noesis.2013.1.1

Castro, S.; López, J. A.; Pecina, J. A.; Mendoza, M. C. y Reyes, C. A. 2013. Exploración de germoplasma nativo de maíz en el centro y sur de Tamaulipas, México. Rev. Mex. Cienc. Agric. 4(4):645-653. https://doi.org/10.29312/remexca.v4i4.1196. DOI: https://doi.org/10.29312/remexca.v4i4.1196

Castro-Nava, S.; Reyes-Méndez, C. A. y Huerta, A. J. 2014. Diversidad genética de características del área foliar en maíces nativos de Tamaulipas bajo altas temperaturas. Rev. Fitotec. 37(3):217-223. https://www.revistafitotecniamexicana.org/documentos/37-3/4a.pdf.

Belachew, Z.; Yisehak, K.; Taye, T. and Janssens, G. P. J. 2013. Chemical composition and in Sacco ruminal degradation of tropical trees rich in condensed tannins. Czech J. Anim. Sci. 58(4):176-192. https://doi.org/10.17221/6712-CJAS. DOI: https://doi.org/10.17221/6712-CJAS

Daniel, J. L. P.; Bernardes, T. F.; Jobim, C. C.; Schmidt, P. and Nussio, L. G. 2019. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 74(2):188-200. https://doi.org/10.1111/gfs.12417.

FIRA. 2010. Tendencias y oportunidades del desarrollo de la lechería en México. FIRA Banco de México, DF. Vol. 23. Boletín informativo Núm. 317.

Fuentes, J.; Cruz, A.; Castro, L.; Gloria, G.; Rodríguez, S. y Ortiz de la Rosa, B. 2001. Evaluación de variedades e híbridos de maíz (Zea mays L.) para ensilado. Agron. Mesoam. 12(2):193-197. https://doi.org/10.15517/am.v12i2.17233.

Garay-Martínez, J. R.; Joaquín-Cancino, S.; Estrada-Drouaillet, B.; Martínez-González, J. C.; Joaquín-Torres, B. M.; Limas-Martínez, A. G. y Hernández-Meléndez, J. 2018. Acumulación de forraje de pasto buffel e híbridos de Urochloa a diferente edad de rebrote. Ecosist. Rec. Agropec. 5(15):573-581. https://doi.org/10.19136/era.a5n15.1634.

Godina, J. E.; Garay, J. R.; Mendoza, S. I.; Joaquín, S.; Rocandio, M. y Lucio, F. 2020. Rendimiento de forraje y composición morfológica de maíces nativos en condiciones semiáridas. Rev. Mex. Cienc. Agric. 24(Esp):59-68. https://doi.org/10.29312/remexca. v0i24.2358. DOI: https://doi.org/10.29312/remexca.v0i24.2358

González, M. E.; Palacios, N.; Espinoza, A. y Bedoya, C. A. 2013. Diversidad genética en maíces nativos mexicanos tropicales. Rev. Fitotec. 36(Supl 3-A):329-338. https://www.revista fitotecniamexicana.org/documentos/36-supl-3-A/6a.pdf.

González-Martínez, J.; Rocandio-Rodríguez, M.; Chacón-Hernández, J. C.; Vanoye-Eligio, V. y Moreno-Ramírez, Y. 2018. Distribución y diversidad de maíces nativos (Zea mays L.) en el altiplano de Tamaulipas, México. Agroproductividad 11(1):124-130. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/163.

Hernández, J.; Rebollar, A.; Mondragón, J.; Guzmán, E. y Rebollar, S. 2016. Costos y competitividad en la producción de bovinos carne en corral en el sur del Estado de México. Investigación y Ciencia. 69:13-20. https://doi.org/10.33064/iycuaa2016691860.

Horwitz, W. 2000. Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists. USA. 2 200 p.

Lucio, F.; Garay, J. R.; Rocandio, M.; Ruiz, S. y Joaquín, S. 2018. Potencial forrajero de maíces nativos e híbridos en Tula, Tamaulipas. Transversalidad Científica y Tecnológica 2(1):89-93.

Núñez, G.; Contreras, E. F. y Faz, R. 2003. Características agronómicas y químicas importantes en híbridos de maíz para forraje con alto valor energético. Téc. Pec. Méx. 41(1):37-48. https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/ 1288/1283.

Núñez, G.; Faz, R.; Tovar, M. R. y Zavala, A. 2001. Híbridos de maíz para la producción de forraje con alta digestibilidad en el norte de México. Téc. Pec. Méx. 39(2):77-88. https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/1332/1327.

Reyes, C. A. 2017. Maíz de riego para el norte y centro de Tamaulipas, ciclo P-V. In: Agenda Técnica Agrícola Tamaulipas. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). México, DF. 266-268 pp.

SAS Institute. 2002. User’s guide of Statistical Analysis System (SAS). SAS Institute Inc. Cary, North Carolina, USA. 550 p.

Segura, F.; Echeverri, R.; Patiño, A. C. y Mejía, A. I. 2007. Descripción y discusión acerca de los métodos de análisis de fibra y del valor nutricional de forrajes y alimentos para animales. Vitae 14(1):72-81. https://revistas.udea.edu.co/index.php/vitae/article/ view/ 596.

SMN. 2020. Servicio Meteorológico Nacional. Normales climatológicas por estado-Tamaulipas. Servicio Meteorológico Nacional. https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=tamps.

Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2a (Ed.). Cornell University Press, EUA. 476 p.

Vargas, T. V.; Hernández, R. M. E.; Gutiérrez, L. J.; Plácido, D. C. J. y Jiménez, C. A. 2007. Clasificación climática del estado de Tamaulipas, México. Ciencia UAT. 2(2):15-19. https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/444/254.

Velázquez-Martínez, M.; Mendoza-Guzmán, S.; Hernández-Guzmán, F. J.; Landa-Salgado, P.; Nieto-Aquino, R. y Mata-Espinosa, M. A. 2018. Producción forrajera de mijo perla y maíz en el Altiplano potosino de México. Rev. Fitotec. 41(4):77-482. https://www.revistafito tecniamexicana.org/documentos/41-4/14a.pdf.

Zaragoza-Esparza, J.; Tadeo-Robledo, M.; Espinosa-Calderón, A.; López-López, C; García-Espinosa, J. C.; Zamudio-González, B.; Turrent-Fernández, A. y Rosado-Núñez, F. 2019. Rendimiento y calidad de forraje de híbridos de maíz en Valles Altos de México. Rev. Mex. Cienc. Agric. 10(1):101-111. https://doi.org/10.29312/remexca.v10i1.1403.

Published

2022-08-02

How to Cite

Joaquín Cancino, Santiago, Mario Rocandio Rodríguez, Perpetuo Álvarez Vázquez, Filogonio Jesús Hernández Guzmán, Andrés Gilberto Limas Martínez, and Jonathan Raúl Garay Martínez. 2022. “Yield and Nutritional Value of Forage and Silage of Native Corns in Subtropical Conditions”. Revista Mexicana De Ciencias Agrícolas 13 (5). México, ME:873-81. https://doi.org/10.29312/remexca.v13i5.3231.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>