Promotion of saladette tomato growth with Bacillus cereus and solarized manure in greenhouse

Authors

  • Alfonso Andrade-Sifuentes Tecnológico Nacional de México-Instituto Tecnológico de Torreón (ITT), Torreón, Coahuila, 27170, México
  • Manuel Fortis-Hernández Tecnológico Nacional de México-Instituto Tecnológico de Torreón (ITT), Torreón, Coahuila, 27170, México
  • Pablo Preciado-Rangel Tecnológico Nacional de México-Instituto Tecnológico de Torreón (ITT), Torreón, Coahuila, 27170, México
  • Jorge Sáenz-Mata Faculty of Biological Sciences-Juarez University of the State of Durango. Gomez Palacio, Durango, Mexico. CP. 35010
  • Yessica Coria-Arellano Universidad Juárez del Estado de Durango-Facultad de Ciencias Biológicas, Gómez Palacio, Durango, 35010, México
  • César Guigón López Faculty of Agricultural and Forestry Sciences-Autonomous University of Chihuahua. Delicias, Chihuahua, Mexico. CP. 33000

DOI:

https://doi.org/10.29312/remexca.v13i7.3120

Keywords:

Solanum lycopersicum, rhizobacteria, biofertilization, sustainable agriculture

Abstract

In the Comarca Lagunera, Mexico, there are greenhouses and shade houses devoted to growing tomatoes (Solanum lycopersicum L.), with high productivity. The search for alternatives to improve production and meet the demand for healthy foods has recently begun. The objective of the work was to characterize a bacterium isolated from the endorhizosphere of tomato plants and evaluate its combined use with solarized manure to promote tomato growth and yield under greenhouse conditions. The bacterium was identified as Bacillus cereus by analyzing the 16S rRNA gene and showed the ability to solubilize phosphates (solubilization halo 5.123 ±0.702 mm), produce siderophores (halo 6.54 mm) and indoleacetic acid (5.9 μg ml-1). In a greenhouse, seeds of tomato variety saladette TOP 2299 were inoculated with B. cereus at a concentration of 1 ×108 CFU ml-1 and 46 days after sowing, the seedlings were transplanted into soil enriched with solarized manure at the rate of 0, 40, 80 t ha-1, or with chemical fertilization (N-P-K 366-95-635). The results show that the application of B. cereus + 40 t ha-1 of solarized manure has a positive influence on tomato plants as it promoted greater height (16%), more root volume (42%) and increases in yield (20%).

Downloads

Download data is not yet available.

References

Ahmed, M. A.; Mahrous, Y. M. A.; Sabry, A. H.; Assem, M. A. E. G. and Mamdouh, A. E. 2021. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 44(3):411-420. https://doi.org/10.1080/01904167.2020.1822399. Andrade, S. A.; Fortis, H. M.; Preciado, R. P.; Orozco, V. J. A.; Yescas, C. P. and Rueda, P. E.O. 2020. Azospirillum brasilense and solarized manure on the production and phytochemical quality of tomato fruits (Solanum lycopersicum L.). Agronomía. 10(12):1956. Doi.org/10.3390/agronomy10121956. Beltrán, P. E.M.; Ayala, R. J. A. y Bucio, J. L. 2020. Interrelaciones entre la disponibilidad de fosfato y el ambiente biótico del suelo en el crecimiento y desarrollo de las plantas. Cienc. Nicolaita. 78:59-74. Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28(4):1327-1350. Doi: 10.1007/s11274-011-0979-9.

Bric, J. M.; Bostock, R. M. and Silverstone, S. E. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57(2):538. Chandrasekaran, M. X.; Chun, S. C.; Oh, J. W.; Paramasivan, M.; Saini, R. K. and Sahayarayan, J. J. 2019. Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in South Korea as a novel plant probiotic bacterium (PPB): implications from total phenolics, flavonoids, and carotenoids content for fruit quality. Agronomy. 9(12):838. doi.org/10.3390/ agronomy9120838.

Chia, W. Y.; Chew, K. W.; Le, C. F.; Lam, S. S.; Chee, C. S. C.; Ooi, M. S. L. and Show, P. L. 2020. Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environ. Pollut. 267:115662. https://doi.org/10.1016/j.envpol.2020.115662.

Coromoto, A. Y. y Reyes, I.. 2018. Microorganismos promotores de crecimiento en el biocontrol de Alternaria alternata en tomate (Solanum Lycopersicum L.). Bioagro. 30:59-66.

Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12-13 pp.

FAOSTAT. 2021. Food and Agriculture Organization Corporate Statistical Database. http://www.fao.org/faostat/es/ #data/QC.

Glick, B. R. 2012. Plant growth promoting bacteria: mechanisms and applications. Scientifica. 2012:963401. https://doi.org/10.6064/2012/963401.

Haque, M. M.; Mosharaf, M. K.; Khatun, M.; Haque, M. A.; Biswas, M. S.; Islam, M. S.; Islam, M. M.; Shozib, H. B.; Miah, M. M. U.; Molla, A. H. and Siddiquee, M. A. 2020. Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Front. Microbiol. 11:542053. Doi:10.3389/fmicb.2020. 542053.

Karthika, S.; Midhun, S. J. and Jisha, M. S. 2020. A potential antifungal and growth-promoting bacterium Bacillus sp. KTMA4 from tomato rhizosphere. Microbial Pathogenesis. 142:104049. Doi:10.1016/j.micpath.2020.104049. Khan, M. A.; Asaf, S.; Khan, A. L.; Jan, R.; Kang, S. M.; Kim, K. M. and Lee, I. J. 2020. Ampliación de la termotolerancia a las plántulas de tomate mediante inoculación con aislado SA1 de Bacillus cereus y comparación con la aplicación de ácido húmico exógeno. Plos One. 15(4):e0232228. Doi:10.1371/journal.pone.0232228.

Khan, M. I.; Afzal, M. J.; Bashir, S.; Naveed, M.; Anum, S.; Cheema, S. A.; Wakeel, A.; Sanaullah, M.; Ali, M. H. and Chen, Z. 2021. Improving nutrient uptake, growth, yield and protein content in Chickpea by the Co-Addition of phosphorus fertilizers, organic Manures, and Bacillus sp. MN-54. Agronomy. 11(3):436. https://doi.org/10.3390/agronomy 11030436.

Khoshru, B.; Mitra, D.; Khoshmanzar, E.; Myo, E. M.; Uniyal, N.; Mahakur, B.; Mohapatra, P. K.; Panneerselvam, P.; Boutaj, H. and Alizadeh, M. 2020. Current scenario and future prospects of plant growth-promoting rhizobacteria: An economic valuable resource for the agriculture revival under stressful conditions. J. Plant Nutr. 43(20):3062-3092.

Kour, D.; Rana, K. L.; Yadav, A. N.; Yadav, N.; Kumar, M.; Kumar, V. and Saxena, A. K. 2020. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal. Agric. 23:101487. https://doi.org/10.1016/j.bcab. 2019.101487.

López, M. J. D.; Salazar, S. E.; Trejo, E. H. I.; García, H. J. L.; Navarro, M. M. y Vázquez, V. C. 2014. Producción de algodón con altas densidades de siembra usando fertilizantes orgánicos. Phyton Rev. Inter. Bot. 83:237-242. Mpanga, I. K.; Dapaah, H. K.; Geistlinger, J.; Ludewig, U. and Neumann, G. 2018. Soil type-dependent interactions of p-solubilizing microorganisms with organic and inorganic fertilizers mediate plant growth promotion in tomato. Agronomy. 8(10):213. Doi.org/10.3390/agronomy8100213. Mukhtar, T.; Rehman, S.; Your, S. D.; Sultan, T.; Seleiman, M. F.; Alsadon, A. A.; Ali, S.; Chaudhary, H. J; Solieman, T. H. I.; Ibrahim, A. A. and Saad, M. A. O. 2020. Mitigation of Heat Stress in Solanum lycopersicum L. by ACC-deaminase and Exopolysaccharide Producing Bacillus cereus: effects on biochemical profiling. Sustainability. 12(6):2159. Doi:10.3390/su12062159.

Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 170(1):265-270.

Noh, M. J.; Yam, C. C.; Borges, G. L.; Zúñiga, A. J. J. y Godoy, H. G. 2014. Aislados bacterianos con potencial biofertilizante para plántulas de tomate. Terra Latinoam. 32(4):273-281.

Pishchik, V. N.; Vorobyev, N. I.; Ostankova, Y. V.; Semenov, A.V. and Totolian, A. A. 2018. Impact of Bacillus subtilis on tomato plants growth and some biochemical characteristics under combined application with humic fertilizer. Inter. J. Plant Soil Sci. 22(6):1-12.

Pretty, J. 2008. Agricultural sustainability: concepts, principles and evidence. Phil. Trans. R. Soc. B. 363(1491):447-465. Raffi, M. M. and Charyulu, P. B. B. N. 2020. Azospirillum-biofertilizer for sustainable cereal crop production: current status. Recent Dev. Appl. Microbiol. Biochem. 2:193-209. Doi:10.1016/b978-0-12-821406-0.00018-7.

Ravindrana, B.; Lee, S. R.; Chang, S. W.; Nguyen, D. D.; Chung, W. J.; Balasubramanian, B.; Mupambwa, H. A.; Arasu, M. V.; Al‐Dhabi, N. A. and Sekaran, G. 2019. Positive effects of compost and vermicompost produced from tannery waste-animal fleshing on the growth and yield of commercial crop-tomato (Lycopersicon esculentum L.) plant. J. Environ. Manag. 234:154-158. https://doi.org/10.1016/j.jenvman.2018.12.100.

Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160(1):47-56.

SIAP. 2021. Servicio de Información Agroalimentaria y Pesquera. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). http://infosiap.siap.gob. mx/aagricola-siap-gb/ientidad/index.jsp.

Spaepen, S.; Bossuyt, S.; Engelen, K.; Marchal, K. and Vanderleyden, J. 2014. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol. 201(3):850-861. Tariq, A.; Pan, K.; Olatunji, O. A.; Graciano, C.; Li, Z.; Sun, F. and Liu, C. 2017. Phosphorous application improves drought tolerance of Phoebe zhennan. Front. Plant Scie. 8:1561. Doi: 10.3389/fpls.2017.01561. Wang, N.; Wang, L.; Zhu, K.; Hou, S.; Chen, L.; Mi, D. and Guo, J. H. 2019. Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Front. Microbiol. 10:98. Doi:10.3389/fmicb.2019.00098.

Zhang, X.; Xin, L.; Lan, Z.; Tian, Y. and Li, J. 2019. Conjunctive use of composted leguminous shrub Caragana microphylla-straw and Bacillus cereus reduces nitrogen input but enhances nitrogen use efficiency and cucumber yields in alkaline soils. Appl. Soil Ecol. 139:69-78. https://doi.org/10.1016/j.apsoil.2019.03.017.

Zhao, L.; Wang, Y. and Kong, S. 2020. Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. Inter. Microbiol. 23:501-509.

Published

2022-11-22

How to Cite

Andrade-Sifuentes, Alfonso, Manuel Fortis-Hernández, Pablo Preciado-Rangel, Jorge Sáenz-Mata, Yessica Coria-Arellano, and César Guigón López. 2022. “Promotion of Saladette Tomato Growth With Bacillus Cereus and Solarized Manure in Greenhouse”. Revista Mexicana De Ciencias Agrícolas 13 (7). México, ME:1259-70. https://doi.org/10.29312/remexca.v13i7.3120.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>