Indicators of soil quality and sustainable productivity with conservation agriculture

Authors

  • Esteban Salvador Osuna-Ceja Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas km 32.5. Pabellón de Arteaga, Aguascalientes, México. AP. 20. CP. 20660. Tel. 55 38718700.
  • Miguel Ángel Martínez-Gamiño Campo Experimental San Luis Potosí-INIFAP
  • J. Saúl Padilla-Ramírez Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas km 32.5. Pabellón de Arteaga, Aguascalientes, México. AP. 20. CP. 20660. Tel. 55 38718700
  • J. Pimentel-López Campus San Luis Potosí-Colegio de Posgraduados

DOI:

https://doi.org/10.29312/remexca.v15i8.2970

Keywords:

aggregate stability, conservation agriculture, MESMIS, soil organic carbon, sustainability

Abstract

The intensive use of the disc plow and its turning action in the agricultural soils of the semi-arid of Mexico has generated severe degradation of physical and chemical properties. This study aimed to evaluate the structural state of a soil (Xerosol) subjected to conservation agriculture to know the soil quality indicators (SQIs) and sustainability indices. In a long-term experiment (1995-2020), under a corn-triticale rotation under irrigation, two soil management systems were evaluated: 1) conventional tillage and 2) conservation agriculture. The indicators evaluated were texture, bulk density, soil organic carbon, structural stability index, aggregate stability by mean weight diameter, total porosity, pore distribution, air-filled porosity, moisture constants (ɵs, FC and PWP), stored water sheet, saturated hydraulic conductivity, pH, electrical conductivity, and grain and forage yield. The results showed a statistical difference between conventional tillage and conservation agriculture (ɑ= 0.05) in 18 of the 19 SQIs analyzed. The highest estimated sustainability was for CA, with 85%, compared to conventional tillage, which was 59%. Conservation agriculture presented greater structural stability with higher porosity values and lower bulk density, which is favorable for the sustainability of soil structure and crop yields.

Downloads

Download data is not yet available.

References

Alonso, M. A. M. 2004. Impactos socioeconómicos de la agricultura ecológica. In: Marrón, J. M. J. y García, F. G. (Coord.) Agricultura Medio Ambiente y Sociedad. Ministerio de Agricultura, Pesca y Alimentación. Madrid, España. 280 p.

Altieri, M. A. and Nicholls, C. I. 2005. Agroecology and the search for a truly sustainable agriculture. United Nations Environment Programme. DF. 290 p.

Astier-Calderón, M.; Maass-Moreno, M. y Etchevers-Barra, J. 2002. Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia. 36(5):605-620.

Báez-Pérez, A.; Limón-Ortega, A.; González-González, L.; Ramírez-Barrientos, C. E. y Bautista-Cruz, A. 2017. Efecto de las prácticas de agricultura de conservación en algunas propiedades químicas de los vertisoles. Revista Mexicana de Ciencias Agrícolas. 8(4):759-772.

Ceballos, V. D.; Hernández, O. I. y Vélez, J. L. 2010. Efecto de la labranza sobre las propiedades físicas de un Andisol del departamento de Noriño. Revista de Agronomía. 27(1)40-48.

Dexter, A. R. 2004. Soil physical quality. Part I. Theory, effects of soil texture, density and organic matter, and effects on root growth. Geoderma. 120:201-214. https://doi.org/10.1016/j.geoderma.2003.09.004.

Duval, M. E.; Galantini, J. A.; Martínez, J. M.; López, F. M. y Wall, L. G. 2015. Evaluación de la calidad física de los suelos de la región pampeana: efecto de las prácticas de manejo. Ciencias Agronómicas-Revista XXV-año 15-2015/033-043.

FAO. 2016. Food and Agriculture Organization of the United Nations. Conservation Agriculture. http://www.fao.org/ag/ca/6c.html.

Franzluebbers, A. J.; Haney, R. L.; Honeycutt, C. W. Schomberg, H. H. and Hons, F. M. 2000. Flux of carbon dioxide following Rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 64(2):613-623. https://pubag.nal.usda.gov.

García, D. Y.; Cárdenas, J. F. y Silva, P. A. 2018. Evaluación de sistemas de labranza sobre propiedades fisicoquímicas y microbiológicas en un Inceptisol. Revista de Ciencias Agrícolas. 35(1):16-25. http://dx.doi.org/10.22267/rcia.183501.79.

Hamza, M. A. and Anderson, W. K. 2005. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil & Tillage Research. 82(2):121-145. http://dx.doi.org/10.22267/rcia.183501.79.

Jury, W. A.; Gardner, W. R. and Gardner, W. H. 1991. Soil physics. 5th Ed. John Wiley and Sons. New York. 328 p.

Lal, R. 2014. Societal value of soil carbon. Journal of soil and water conservation. 69(6):186A-192A. http//dx.doi.org/10.2489/jswc.69.6.186A.

Le Bissonnais, Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47:425-437. https://doi.org/10.22267/rcia.183501.79.

Martínez, A. y Gómez, J. 2012. Elección de los agricultores en la adopción de tecnologías de manejo de suelos en sistemas de producción de algodón y sus cultivos en rotación en el Valle cálido del alto magdalena. Revista Corpoica. 13(1):62-70. http://www.redalyc.org/articulo.oa.

Martínez-Gamiño, M. A.; Osuna-Ceja, E. S. y Espinosa-Ramírez, M. 2019. Impacto acumulado de la agricultura de conservación en propiedades del suelo y rendimiento de maíz. Revista Mexicana de Ciencias Agrícolas. 10(4):765-778. Doi: https//doi.org/10.29312/remexca.v10i4.1640.

Masera, O.; Astier, M. y López-Ridaura, S. 2000. Sustentabilidad y manejo de recursos naturales: el marco de evaluación MESMIS. Mundi Prensa, GIRA, UNAM, DF. 160 p. https//www.researchgate.net.

Navarro, B. A.; Figueroa, S, B.; Martínez, M. M. R.; González, C. F. V. y Osuna, C. E. S. 2008. Indicadores físicos del suelo bajo labranza de conservación y su relación con el rendimiento de tres cultivos. Agricultura Técnica en México. 34(2):151-158. https://www.scielo.org.mx.

Osuna-Ceja, E. S.; Figueroa-Sandoval, B.; Oleschko, M. K.; Flores-Delgadillo, L.; Martínez-Menes, M. R. y González-Cossío, F. V. 2006. Efecto de la estructura del suelo sobre el desarrollo radical del maíz con dos sistemas de labranza. Agrociencia. 40(1):27-38. http://www.redalyc.org/articulo.oa.

Page, A. L.; Miller, R. H. and Keeney, D. R. 1982. Methods of soil analysis. Chemical and microbiological properties. Agronomy No. 9. ASA and SSSA. Madison, WI, USA. 1159 p. https://onlinelibrary.wiley.com.

Reynols, W. and Elrick, D. 1990. Ponded infiltration from a single ring: analysis of steady flow. Soil Sci. Soc. Am. J. 54(5):1233-1241. https://doi.org/10.2136/sssaj1990.03615995005400050006x.

Rubio, C. M.; Llorens, P. and Gallart, F. 2008. Uncertainty and efficiency of pedotransfer functions for estimating water retention characteristics of soil. European Journal of Soil Science. 59(2):339-347. Doi:10.1111/j.1365-2389.2007.01002.x.

Sarabia, M. I. F.; Cisneros, R. A. J.; Aceves, D. A.; Durán, H. M. G. y Castro, J. L. 2011. Calidad del agua de riego en suelos agrícolas y cultivos del valle de San Luís Potosí. México. Revista Internacional de Contaminación Ambiental. 27(2):103-113. http://www.scielo.org.mx.

SAS Institute. 2013. Statistical Analysis Sofware. Versión 9.1.3, edit. SAS Institute Inc. Cary, NC. USA. http://www.sas.com/en us/sofware/analytics/stat.html#>.

SEMARNAT. 2000. Secretaría de Medio Ambiente y Recursos Naturales. Especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. No. NOM-021-SEMARNAT-2000, Inst. Diario Oficial de la Federación, México. 85 p. http://www.semarnat.gob.mx/node/18.

Shukla, M. K.; Lal, R. and Ebinger M. 2003. Tillage effects on physical and hydrological properties of a typic Argiaquoll in Central Ohio. Soil Science. 168(11):802-811. Doi: 10.1097/01.ss.0000100470.96182.4a.

Verhulst, N. I. y Bram, G. F. 2015. Agricultura de Conservación, ¿mejora la calidad del suelo a fin de obtener sistemas de producción sustentable? Centro Internacional de Mejoramiento de Maíz Y Trigo (CIMMYT). 18 p. https://repository.cimmyt.org.

Published

2024-12-17

How to Cite

Osuna-Ceja, Esteban Salvador, Miguel Ángel Martínez-Gamiño, J. Saúl Padilla-Ramírez, and J. Pimentel-López. 2024. “Indicators of Soil Quality and Sustainable Productivity With Conservation Agriculture”. Revista Mexicana De Ciencias Agrícolas 15 (8). México, ME:e2970. https://doi.org/10.29312/remexca.v15i8.2970.

Issue

Section

Articles

Most read articles by the same author(s)