Physiological and numerical components of canola yield affected by density and sowing system

Authors

  • Gustavo García Hernández Master in Agricultural Sciences and Natural Resources-Autonomous University of the State of Mexico.
  • Rogelio Araujo Díaz Master in Agricultural Sciences and Natural Resources-Autonomous University of the State of Mexico.
  • Gaspar Estrada Campuzano Faculty of Agricultural Sciences-Autonomous University of the State of Mexico
  • Carlos Gustavo Martínez Rueda Faculty of Agricultural Sciences-Autonomous University of the State of Mexico
  • Aurelio Domínguez López Faculty of Agricultural Sciences-Autonomous University of the State of Mexico

DOI:

https://doi.org/10.29312/remexca.v13i4.2927

Keywords:

Brassica napus L., biomass, number of seeds, population density

Abstract

In the present work, the physiological and numerical components of canola yield affected by density and sowing system were evaluated. Two spring canola genotypes were evaluated: Hyola 61 (hybrid) and Bioaureo 2486 (open pollination) under three densities (50, 75 and 90 seeds m-2), during the 2019-2020 winter-spring cycle. The treatments were established under a randomized complete block design with four repetitions, in each of the two systems, FBS (flat bed system) and DRBS (double-row bed system), that were considered as environments. The FBS presented the highest yield (4.9 t ha-1) on average. Changes in seed yield were associated with a higher biomass production at maturity. Bioaureo 2486 exceeded by 7% the number of seeds obtained by Hyola 61 in the density of 90 plants m-2. The number of seeds per m2 was positively associated with the number of siliques per m2. However, the increase in plant density decreased the number of branches.

Downloads

Download data is not yet available.

References

Assefa, Y.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Smith, S. and Ciampitti, I. A. 2018. Analysis of long-term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci. Rep. 8(1):1-11. https://doi.org/10.1038/s41598‐018‐23362‐x. DOI: https://doi.org/10.1038/s41598-018-23362-x

Cheng-dong, H.; Quan-quing. L.; Xiao-lin, L. and Chao-chun, Z. 2019. Effect of intercropping on maize grain yield and yield components. J. Integrative Agric. 18(8):1690-1700. Doi:10.1016/s2095-3119(19)62648-1.

CONASIPRO. 2019. Bases de datos oleaginosas mundial y nacional 1980-2018. http://www.oleaginosas.org/cat-69.shtml#51.

Estrada, C. G.; Slafer, G. A. and Miralles, D. J. 2012. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Res. 128:167-179. https://doi.org/10.1016/j.fcr.2012.01.003. DOI: https://doi.org/10.1016/j.fcr.2012.01.003

FAOSTAT. 2018. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Base de datos estadísticos. http://www.fao.org.

French, R. J.; Seymour, M. and Malik, R. S. 2016. Plant density response and optimum crop densities for canola (Brassica napus L.) in Western Australia. Crop Pasture Sci. 67(4):397-408. https://doi.org/10.1071/CP15373. DOI: https://doi.org/10.1071/CP15373

Gan, Y.T.; Harker, K. N.; Kutcher, H. R.; Gulden, R. H.; Irvine, B.; May, W. E. and O’Donovan, J. T. 2016. Canola seed yield and phenological responses to plant density. Can. J. Plant Sci. 96(1):151-159. https://doi.org/10.1139/cjps-2015-0093. DOI: https://doi.org/10.1139/cjps-2015-0093

Gil, H.; Martínez, C. G y Estrada, G. 2014. Impacto del sistema de labranza y dosis de nitrógeno en el rendimiento y calidad nutricional de forraje de avena. Rev. Mex. Cienc. Agríc. 6(5):951-964. DOI: https://doi.org/10.29312/remexca.v5i6.881

Hosseini, M. N.; Alizadeh, H. M. and Ahmadi, H. M. 2006. Effects of plant density and nitrogen rates on the competitive ability of canola (Brassica napus L.) against weeds. J. Agric. Sci. Technol. 8(4):281-291.

Hua, S.; Lin, B.; Hussain, N.; Zhang, Y.; Yu, H.; Ren, Y.; Ding, H. and Zang, D. 2014. Delayed planting affects seed yield, biomass production, and carbohydrate allocation in canola (Brassica napus). Int. J. Agric. Biol. 16(4):671-680.

Jandel, 1991. Table Curve v. 3.0. User’s Manual Versión 3.0. AISN Software. Jandel Scientific, Corte Madera, CA.

Kazemeini, A.; Edalat, M.; Shekoofa, A. and Hamidi, R. 2010. Effects of nitrogen and plant density on rapeseed (Brassica napus L.) yield and yield components in Southern Iran. Rev. Cienc. Aplicadas. 10(14):1461-1465. Doi:10.3923/jas.2010.1461.1465. DOI: https://doi.org/10.3923/jas.2010.1461.1465

Kirkegaard, A. J.; Lilley, M. J. and Morrison, M. J. 2016. Drivers of trends in Australian canola productivity and prospects. Crop Pasture Sci. 67(4):i-ix. https://doi.org/10.1071/CPv67n4-FO. DOI: https://doi.org/10.1071/CPv67n4_FO

Li, S. Y.; Yu, C. B.; Zhu, S.; Xie, L. H.; Hu, X. J.; Liao, X.; Liao, S. X. and Che, Z. 2014. High planting density benefits to mechanized harvest and nitrogen application rates of oilseed rape (Brassica napus L.). Soil Sci. Plant Nutr. 60(3):384-392. Doi:10.1080/00380768. 2014.895417. DOI: https://doi.org/10.1080/00380768.2014.895417

Li, X.; Li, Q.; Yang, T.; Nie, Z.; Chen, G. and Hu, L. 2016. Responses of plant development, biomass and seed production of direct sown oilseed rape (Brassica napus L.) to nitrogen application at different stages in Yangtze River Basin. Field Crops Res. 194:12-20. Doi: 10.1016/j.fcr.2016.04.024. DOI: https://doi.org/10.1016/j.fcr.2016.04.024

Mamun, F.; Ali, M. H.; Chowdhury, I. F.; Hasanuzzaman, M. and Matin, M. A. 2014. Performance of rapeseed and mustard varieties grown under different plant density. Sci. Agric. 4(2):70-75. Doi: 10.15192/PSCP.SA.2014.4.2.7075. DOI: https://doi.org/10.15192/PSCP.SA.2014.4.2.7075

Mobasser, H. R.; Shojaee-Ghadikolaee, M.; Nasiri, M.; Daneshian, J.; BarariTari, D. and Pourkalhor, H. 2008. Effect of nitrogen rates and plant density on the agronomic traits of canola (Brassica napus L.) in paddy field. Asian J. Plant Sci. 7(2):233-236. Doi:10.3923/ajps.2008.233.236. DOI: https://doi.org/10.3923/ajps.2008.233.236

Palaniswamy, U. R. and Palaniswamy, K. M. 2006. Handbook of statistics for teaching and research in plant and crop science. The Harworth Press, Inc., New York. 624 p. DOI: https://doi.org/10.1201/9781482277814

Parry, M. A. J. and Hawkesford, M. J. 2010. Food security: increasing yield and improving resource use efficiency. Proceed. Nutr. Soc. 69(04):592-600. https://doi.org/10.1017/ S0029665110003836. DOI: https://doi.org/10.1017/S0029665110003836

Rathke, G. W.; Behrens, T. and Diepenbrock, W. 2006. Integrated management strategies to improve seed yield; oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric. Ecosys, Environ. 117(2-3):80-108. https://doi.org/10.1016/ j.agee.2006.04.006. DOI: https://doi.org/10.1016/j.agee.2006.04.006

Rondanini, D. R.; Menéndez, Y. C.; Gómez, N. V.; Miralles, D. J. and Botto, J. F. 2017. Vegetative plasticity and floral branching compensate low plant density in modern spring rapeseed. Field Crop Res. 210:104-113. https://doi.org/10.1016/j.fcr.2017.05.021. DOI: https://doi.org/10.1016/j.fcr.2017.05.021

Różyło, K. and Pałys, E. 2014. New oilseed rape (Brassica napus L.) varieties-canopy development, yield components, and plant density. Section B - Soil & Plant Sci. Acta Agric. Scandinavica 64(3):260-266. DOI: https://doi.org/10.1080/09064710.2014.905625

Shahin, Y. and Valiollah, R. 2009. Effects of row spacing and seeding rates on someagronomical traits of spring canola (Brassica napus L.) cultivars. J. Cent. Eur. Agric. 10(1):115-212.

Uzun, B.; Yol, E. and Furat, S. 2012. The influence of row and intra-row spacing to seed yield and its components of winter sowing canola in the true Mediterranean type of environment. Bulg. J. Agric. Sci. 18(1):83-91.

Vincze, E. 2017. The effect of sowing date and plant density on yield elements of different winter oil seed rape (Brassica napus var. napus F. biennis L.) genotypes. Columella. 1(4):21-25. Doi: 10.18380/szie.colum.2017.4.1.suppl. DOI: https://doi.org/10.18380/SZIE.COLUM.2017.4.1.suppl

Wang, R.; Cheng, T. and Hu, L. 2015. Effect of wide-narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Res. 172:42-52. Doi:10.1016/j.fcr. 2014.12.005. DOI: https://doi.org/10.1016/j.fcr.2014.12.005

Waseem, M.; Baloch, D. and Khan, I. 2014. Influence of various row spacing on the yield and yield components of Raya Anmol and Faisal Canola under coastal climatic conditions of Lasbela. Am. J. Plant Sci. 5(15):2230-2237. Doi:10.4236/ajps.2014.515237. DOI: https://doi.org/10.4236/ajps.2014.515237

Yang, C.; Gan, Y.; Harker, K. N.; Kutcher, H. R.; Gulden, R.; Irvine, B. and May, W. E. 2014. Up to 32% yield increase with optimized spatial patterns of canola plant establishment in western Canada. Agron. Sustain. Dev. 34:793-801. https://doi.org/10.1007/s13593-014-0218-5. DOI: https://doi.org/10.1007/s13593-014-0218-5

Zhang, H. and Flottmann, S. 2016. Seed yield of canola (Brassica napus L.) is determined primarily by biomass in a high-yielding environment. Crop Pasture Scie. 67(4):369-380. https://doi.org/10.1071/CP15236. DOI: https://doi.org/10.1071/CP15236

Published

2022-06-21

How to Cite

García Hernández, Gustavo, Rogelio Araujo Díaz, Gaspar Estrada Campuzano, Carlos Gustavo Martínez Rueda, and Aurelio Domínguez López. 2022. “Physiological and Numerical Components of Canola Yield Affected by Density and Sowing System”. Revista Mexicana De Ciencias Agrícolas 13 (4). México, ME:661-73. https://doi.org/10.29312/remexca.v13i4.2927.

Issue

Section

Articles

Most read articles by the same author(s)