Physiological and numerical components of canola yield affected by density and sowing system
DOI:
https://doi.org/10.29312/remexca.v13i4.2927Keywords:
Brassica napus L., biomass, number of seeds, population densityAbstract
In the present work, the physiological and numerical components of canola yield affected by density and sowing system were evaluated. Two spring canola genotypes were evaluated: Hyola 61 (hybrid) and Bioaureo 2486 (open pollination) under three densities (50, 75 and 90 seeds m-2), during the 2019-2020 winter-spring cycle. The treatments were established under a randomized complete block design with four repetitions, in each of the two systems, FBS (flat bed system) and DRBS (double-row bed system), that were considered as environments. The FBS presented the highest yield (4.9 t ha-1) on average. Changes in seed yield were associated with a higher biomass production at maturity. Bioaureo 2486 exceeded by 7% the number of seeds obtained by Hyola 61 in the density of 90 plants m-2. The number of seeds per m2 was positively associated with the number of siliques per m2. However, the increase in plant density decreased the number of branches.
Downloads
References
Assefa, Y.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Smith, S. and Ciampitti, I. A. 2018. Analysis of long-term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci. Rep. 8(1):1-11. https://doi.org/10.1038/s41598‐018‐23362‐x. DOI: https://doi.org/10.1038/s41598-018-23362-x
Cheng-dong, H.; Quan-quing. L.; Xiao-lin, L. and Chao-chun, Z. 2019. Effect of intercropping on maize grain yield and yield components. J. Integrative Agric. 18(8):1690-1700. Doi:10.1016/s2095-3119(19)62648-1.
CONASIPRO. 2019. Bases de datos oleaginosas mundial y nacional 1980-2018. http://www.oleaginosas.org/cat-69.shtml#51.
Estrada, C. G.; Slafer, G. A. and Miralles, D. J. 2012. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Res. 128:167-179. https://doi.org/10.1016/j.fcr.2012.01.003. DOI: https://doi.org/10.1016/j.fcr.2012.01.003
FAOSTAT. 2018. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Base de datos estadísticos. http://www.fao.org.
French, R. J.; Seymour, M. and Malik, R. S. 2016. Plant density response and optimum crop densities for canola (Brassica napus L.) in Western Australia. Crop Pasture Sci. 67(4):397-408. https://doi.org/10.1071/CP15373. DOI: https://doi.org/10.1071/CP15373
Gan, Y.T.; Harker, K. N.; Kutcher, H. R.; Gulden, R. H.; Irvine, B.; May, W. E. and O’Donovan, J. T. 2016. Canola seed yield and phenological responses to plant density. Can. J. Plant Sci. 96(1):151-159. https://doi.org/10.1139/cjps-2015-0093. DOI: https://doi.org/10.1139/cjps-2015-0093
Gil, H.; Martínez, C. G y Estrada, G. 2014. Impacto del sistema de labranza y dosis de nitrógeno en el rendimiento y calidad nutricional de forraje de avena. Rev. Mex. Cienc. Agríc. 6(5):951-964. DOI: https://doi.org/10.29312/remexca.v5i6.881
Hosseini, M. N.; Alizadeh, H. M. and Ahmadi, H. M. 2006. Effects of plant density and nitrogen rates on the competitive ability of canola (Brassica napus L.) against weeds. J. Agric. Sci. Technol. 8(4):281-291.
Hua, S.; Lin, B.; Hussain, N.; Zhang, Y.; Yu, H.; Ren, Y.; Ding, H. and Zang, D. 2014. Delayed planting affects seed yield, biomass production, and carbohydrate allocation in canola (Brassica napus). Int. J. Agric. Biol. 16(4):671-680.
Jandel, 1991. Table Curve v. 3.0. User’s Manual Versión 3.0. AISN Software. Jandel Scientific, Corte Madera, CA.
Kazemeini, A.; Edalat, M.; Shekoofa, A. and Hamidi, R. 2010. Effects of nitrogen and plant density on rapeseed (Brassica napus L.) yield and yield components in Southern Iran. Rev. Cienc. Aplicadas. 10(14):1461-1465. Doi:10.3923/jas.2010.1461.1465. DOI: https://doi.org/10.3923/jas.2010.1461.1465
Kirkegaard, A. J.; Lilley, M. J. and Morrison, M. J. 2016. Drivers of trends in Australian canola productivity and prospects. Crop Pasture Sci. 67(4):i-ix. https://doi.org/10.1071/CPv67n4-FO. DOI: https://doi.org/10.1071/CPv67n4_FO
Li, S. Y.; Yu, C. B.; Zhu, S.; Xie, L. H.; Hu, X. J.; Liao, X.; Liao, S. X. and Che, Z. 2014. High planting density benefits to mechanized harvest and nitrogen application rates of oilseed rape (Brassica napus L.). Soil Sci. Plant Nutr. 60(3):384-392. Doi:10.1080/00380768. 2014.895417. DOI: https://doi.org/10.1080/00380768.2014.895417
Li, X.; Li, Q.; Yang, T.; Nie, Z.; Chen, G. and Hu, L. 2016. Responses of plant development, biomass and seed production of direct sown oilseed rape (Brassica napus L.) to nitrogen application at different stages in Yangtze River Basin. Field Crops Res. 194:12-20. Doi: 10.1016/j.fcr.2016.04.024. DOI: https://doi.org/10.1016/j.fcr.2016.04.024
Mamun, F.; Ali, M. H.; Chowdhury, I. F.; Hasanuzzaman, M. and Matin, M. A. 2014. Performance of rapeseed and mustard varieties grown under different plant density. Sci. Agric. 4(2):70-75. Doi: 10.15192/PSCP.SA.2014.4.2.7075. DOI: https://doi.org/10.15192/PSCP.SA.2014.4.2.7075
Mobasser, H. R.; Shojaee-Ghadikolaee, M.; Nasiri, M.; Daneshian, J.; BarariTari, D. and Pourkalhor, H. 2008. Effect of nitrogen rates and plant density on the agronomic traits of canola (Brassica napus L.) in paddy field. Asian J. Plant Sci. 7(2):233-236. Doi:10.3923/ajps.2008.233.236. DOI: https://doi.org/10.3923/ajps.2008.233.236
Palaniswamy, U. R. and Palaniswamy, K. M. 2006. Handbook of statistics for teaching and research in plant and crop science. The Harworth Press, Inc., New York. 624 p. DOI: https://doi.org/10.1201/9781482277814
Parry, M. A. J. and Hawkesford, M. J. 2010. Food security: increasing yield and improving resource use efficiency. Proceed. Nutr. Soc. 69(04):592-600. https://doi.org/10.1017/ S0029665110003836. DOI: https://doi.org/10.1017/S0029665110003836
Rathke, G. W.; Behrens, T. and Diepenbrock, W. 2006. Integrated management strategies to improve seed yield; oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric. Ecosys, Environ. 117(2-3):80-108. https://doi.org/10.1016/ j.agee.2006.04.006. DOI: https://doi.org/10.1016/j.agee.2006.04.006
Rondanini, D. R.; Menéndez, Y. C.; Gómez, N. V.; Miralles, D. J. and Botto, J. F. 2017. Vegetative plasticity and floral branching compensate low plant density in modern spring rapeseed. Field Crop Res. 210:104-113. https://doi.org/10.1016/j.fcr.2017.05.021. DOI: https://doi.org/10.1016/j.fcr.2017.05.021
Różyło, K. and Pałys, E. 2014. New oilseed rape (Brassica napus L.) varieties-canopy development, yield components, and plant density. Section B - Soil & Plant Sci. Acta Agric. Scandinavica 64(3):260-266. DOI: https://doi.org/10.1080/09064710.2014.905625
Shahin, Y. and Valiollah, R. 2009. Effects of row spacing and seeding rates on someagronomical traits of spring canola (Brassica napus L.) cultivars. J. Cent. Eur. Agric. 10(1):115-212.
Uzun, B.; Yol, E. and Furat, S. 2012. The influence of row and intra-row spacing to seed yield and its components of winter sowing canola in the true Mediterranean type of environment. Bulg. J. Agric. Sci. 18(1):83-91.
Vincze, E. 2017. The effect of sowing date and plant density on yield elements of different winter oil seed rape (Brassica napus var. napus F. biennis L.) genotypes. Columella. 1(4):21-25. Doi: 10.18380/szie.colum.2017.4.1.suppl. DOI: https://doi.org/10.18380/SZIE.COLUM.2017.4.1.suppl
Wang, R.; Cheng, T. and Hu, L. 2015. Effect of wide-narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Res. 172:42-52. Doi:10.1016/j.fcr. 2014.12.005. DOI: https://doi.org/10.1016/j.fcr.2014.12.005
Waseem, M.; Baloch, D. and Khan, I. 2014. Influence of various row spacing on the yield and yield components of Raya Anmol and Faisal Canola under coastal climatic conditions of Lasbela. Am. J. Plant Sci. 5(15):2230-2237. Doi:10.4236/ajps.2014.515237. DOI: https://doi.org/10.4236/ajps.2014.515237
Yang, C.; Gan, Y.; Harker, K. N.; Kutcher, H. R.; Gulden, R.; Irvine, B. and May, W. E. 2014. Up to 32% yield increase with optimized spatial patterns of canola plant establishment in western Canada. Agron. Sustain. Dev. 34:793-801. https://doi.org/10.1007/s13593-014-0218-5. DOI: https://doi.org/10.1007/s13593-014-0218-5
Zhang, H. and Flottmann, S. 2016. Seed yield of canola (Brassica napus L.) is determined primarily by biomass in a high-yielding environment. Crop Pasture Scie. 67(4):369-380. https://doi.org/10.1071/CP15236. DOI: https://doi.org/10.1071/CP15236
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.