Evaluación de biorreactores con y sin inyección de aire para la micropropagación de Vanilla planifolia G. Jackson
DOI:
https://doi.org/10.29312/remexca.v16i6.3804Palabras clave:
micropropagación, mecánico, medios líquidos, Rita®, vainillaResumen
La especie Vanilla planifolia G. Jackson, tiene un alto valor comercial en la industria alimentaria, en la farmacéutica y la cosmética. Los sistemas de inmersión temporal o biorreactores permiten una propagación in vitro más rápida y controlada en condiciones de laboratorio. Sin embargo, debido a los altos costos de los biorreactores comerciales, por ejemplo, el modelo Rita®, uno de los más utilizados para la micropropagación de varias especies vegetales, se buscan alternativas más económicas. Se realizó la multiplicación in vitro de vainilla en dos tipos de biorreactores de inmersión temporal, con el objetivo de evaluar la eficiencia de un biorreactor mecánico sin inyección de aire en comparación con un biorreactor tipo Rita® que utiliza la inyección de aire; llevándose a cabo la investigación entre los años 2023-2024. Se utilizó el sistema de cultivo en semi sólido como testigo. Después de 30 días de cultivo se analizaron las variables fisiológicas: número de brotes, número de hojas, longitud de brotes e índice de crecimiento; así como, la cuantificación de variables bioquímicas como contenido total de clorofilas α y β, contenido de fenoles y carbohidratos. Los resultados obtenidos indicaron que, el biorreactor BSA fue estadísticamente igual (p≤ 0.05) al biorreactor Rita® en las variables número y longitud de brotes. Ambos resultaron estadísticamente diferentes (p≤ 0.05) al sistema semi sólido en la mayoría de las variables evaluadas. Esto sugiere que el uso de un biorreactor mecánico sin la inyección de aire puede ser usado como una alternativa por su bajo costo para la micropropagación de diversas especies.
Descargas
Citas
Aragón, C. E.; Escalona, M.; Capote, I.; Pina, D.; Cejas, I.; Rodríguez, R.; Jesús-Cañal, M.; Sandoval, J.; Roels, S.; Debergh, P. and González-Olmedo, J. 2005. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitro Cellular & Developmental Biology-Plant. 41(4):550-554. https://doi.org/10.1079/IVP2005640.
Arencibia, A. D.; Vergara, C.; Quiroz, K.; Carrasco, B.; Bravo, C. and Garcia-Gonzales, R. 2013. an approach for micropropagation of blueberry (Vaccinium corymbosum L.) plants mediated by temporary immersion bioreactors (TIBs). American Journal of Plant Sciences. 4(5):1022-1028. https://doi.org/10.4236/ajps.2013.45126.
Debabrata, S.; Ramesh, C. and Prakash, S. N. 1997. Effect of inoculation density on potato micropropagation. Plant Cell, Tissue and Organ Culture. 48(1):63-66.
Dewir, D. H.; Chakrabarty, D.; Hahn, D. and Paek, E. J. 2006. A simple method for masspropagation of Spathiphylium cannifolium using an airlift bioreactor. In vitro Cellular & Developmental Biology-Plant. 42(3):291-297.
Escalona, M.; Lorenzo, J. C.; González, B.; Daquinta, M.; Gonzalez, J. L.; Desjardins, Y. and Borroto, C. G. 1999. Pineapple (Ananas comosus L. Merr.) micropropagation in temporary immersion systems. Plant Cell Reports. 18(9):743-748. https://doi.org/10.1007/s002990050653.
Escalona, M.; Samson, G.; Borroto, C. and Desjardins, Y. 2003. Physiology of effects of temporary immersion bioreactors on micro propagated pineapple plantlets. In vitro Cellular & Developmental Biology Plant. 39(6):651-656. https://doi.org/10.1079/IVP2003473.
Etienne, H. and Berthouly, M. 2002. Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture. 69:215-231.
Etienne, H.; Lartaud, M.; Michaux-Ferriere, N.; Carron, M. E.; Berthouly, M. and Teisson, A. 1997. Improvement of somatic embryogenesis in Hevea brasiliensis (Mt) ll. Arg.) using the temporary immersion technique. In vitro Cellular & Developmental Biology- Plant. 33(2):81-87.
Gao, J. and Lee, J. M. 1992. Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biotechnology Progress. 8(4):285-290. https://doi.org/10.1021/bp00016a004.
Georgiev, V.; Schumann, A.; Pavlov, A. and Bley, T. 2014. Temporary immersion systems in plant biotechnology. Engineering in Life Sciences. 14(6):607-621. https://doi.org/10.1002/elsc.201300166.
Hahn, E. J. and Paek, K. Y. 2005. Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. Plant Cell, Tissue and Organ Culture. 81(3):301-306. https://doi.org/10.1007/s11240-004-6655-0.
Jin, M. Y.; Piao, X. C.; Xiu, J. R.; Park, S. Y. and Lian, M. L. 2013. Micropropagation using a bioreactor system and subsequent acclimatization of grape rootstock ‘5BB’. Scientia Horticulturae. 164:35-40. https://doi.org/10.1016/j.scienta.2013.09.004.
Jova, M. C.; Kosky, R. G. and Cuellar, E. E. 2011. Effect of liquid media culture systems on yam plant growth (Dioscorea alata L. Pacala Duclos). Biotechnology, Agronomy, Society and Environment. 15(4):515-521.
Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer and Roland Douce. Methods in Enzymology, Plant Cell Membranes. 148:350-382. Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1.
Lotfi, M. and Werbrouck, S. P. O. 2020. SETISTM, a novel variant within the temporary immersion bioreactors. Acta Horticulturae. 30(1285):253-258. https://doi.org/10.17660/ActaHortic.2020.1285.37.
Murashige, T. and Skoog, F. 1962. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 15(3):473-497. https://doi:10.1111/j.1399-3054.1962.tb08052.x.
Robert, M. L.; Herrera-Herrera, J. L.; Herrera-Herrera, G.; Herrera-Alamillo, M. Á. and Fuentes-Carrillo, P. 2006. A new temporary immersion bioreactor system for micropropagation. In: Loyola-Vargas, V. M. and Vázquez-Flota, F. Methods in Molecular Biology. 318(2):121-130. Humana Press. https://doi.org/10.1385/1-59259-959-1:121.
Roels, S.; Escalona, M.; Cejas, I.; Noceda, C.; Rodriguez, R.; Canal, M. J.; Sandoval, J. and Debergh, P. 2005. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tissue and Organ Culture. 82(1):57-66. https://doi.org/10.1007/s11240-004-6746-y.
Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 82(1):57-66. https://doi.org/10.1007/s11240-004-6746-y.
Trauger, M.; Hile, A.; Sreenivas, K.; Shouse, E. M.; Bhatt, J.; Lai, T.; Mohandass, R.; Tripathi, L.; Ogden, A. J. and Curtis, W. R. 2022. CO2 supplementation eliminates sugar-rich media requirement for plant propagation using a simple inexpensive temporary immersion photobioreactor. Plant Cell, Tissue and Organ Culture (PCTOC). 150(1):57-71. https://doi.org/10.1007/s11240-021-02210-3.
Whitman, F. H.; Blaydes, D. F. and Devlin, R. M. 1971. Experiments in plant physiology. Monograph Wageningen University, Ed. Van Nostrand Rteinhold. New York. 245 p.
Wu, H. C.; Kuo, M. L. and Chen, C. M. 2018. Promotion of vegetative growth in force-ventilated Protea Cynaroides L. explants cultured in modified temporary immersion culture vessels. HortScience. 53(2):231-235. https://doi.org/10.21273/hortsci12513-17.
Wu, S. Q.; Lian, M. L.; Gao, R.; Park, S. Y. and Piao, X. C. 2011. Bioreactor application on adventitious root culture of Astragalus membranaceus. In vitro Cellular & Developmental Biology- Plant. 47(6):719-724. https://doi.org/10.1007/s11627-011-9376-1.

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Mexicana de Ciencias Agrícolas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.