Efecto del N mineral y N2 sobre la nutrición nitrogenada en la planta de soya
DOI:
https://doi.org/10.29312/remexca.v13i6.3311Palabras clave:
inoculación, N-aminoácido, N-ureidoResumen
La fijación biológica del nitrógeno, es una opción sustentable a la fertilización nitogenada. Con el objetivo de este estudio fue evaluar el efecto del nitrógeno mineral y del N2 proveniente de la fijación biológica del nitrógeno sobre la nutrición nitrogenada en plantas de soya, fueron evaluados seis tratamientos resultantes de combinar tres niveles de N mineral:(0.0, 3.5 y 7 meq L-1 de NO3-) e inoculación con la cepa CP-2 de Bradhyrizobium japonicum (con y sin inoculación), cada tratamiento se estableció por triplicado, en macetas de plástico de tres litros de capacidad y agrolita como sustrato transplantándose seis plántulas de soya por maceta. Se evaluó la materia seca (MS) en órganos de la planta, número y peso seco de nódulos, fijación de N2, N soluble (N-aminoácido y N-ureido) y N total por órgano. Las plantas que recibieron N mineral transportaron entre 86 y 95% del N soluble total como N aminoacido, mientras que en plantas inoculadas el aporte de N mineral afectó negativamente la cantidad de nódulos (29%) y el peso de nódulos (64%), disminuyendo 55% la fijación de N2, en estas plantas entre 50 y 70% del N soluble transportado fue como N ureido. A la etapa de R6, se estimó que 70% del N total acumulado en la MS provino del N2 fijado, favoreciéndose la MS de hojas, tallos, peciolos y principalmente la MS en vainas. Por lo tanto, en este estudio demuestra que las plantas inoculadas y abastecidas con N mineral obtienen mejores efectos para la MS y el N total.
Descargas
Citas
Anglade, J.; Billen, G. and Garnier, J. 2015. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume-based cropping systems in europe. Ecosphere. 6(3):1-24. https://doi.org/10.1890/ES14-00353.1. DOI: https://doi.org/10.1890/ES14-00353.1
Bala, A. and Giller, K. E.. 2006. Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr. Cycling Agroecosyst. 76(2):319-330. DOI: https://doi.org/10.1007/s10705-005-2003-y
Balta, C. R. A.; Rodríguez, D. Á. M.; Guerrero, A. R.; Cachique, D.; Edín, A. P.; Arévalo, L. L. y Oscar, L. O. L. I. 2015. Absorción y concentración de nitrógeno, fósforo y potasio en sacha inchi (Plukenetia volubilis L.) en suelos ácidos, San Martín, Perú. Folia Amazónica. 24(2):23-30 DOI: https://doi.org/10.24841/fa.v24i2.68
Cerezini, P.; Kuwano, B. H.; Grunvald, A. K.; Hungria, M. and Nogueira, M. A. 2020. Soybean tolerance to drought depends on the associated Bradyrhizobium strain. Brazilian Journal of Microbiology. 51(4):1977-1986.
Chen, C.; Wang, J.; Liu, D.; Yang, C.; Liu, Y.; Ruoff, R. S. and Lei, W. 2018. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nature communications. 9(1):1-8. DOI: https://doi.org/10.1038/s41467-018-04294-6
Collier, R. and Tegeder, M. 2012. Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. The Plant Journal. 72(3):355-367. DOI: https://doi.org/10.1111/j.1365-313X.2012.05086.x
Ertani, A.; Pizzeghello, D.; Altissimo, A. and Nardi, S. 2013. Use of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. Journal of Plant Nutrition and Soil Science. 176(2):287-295. DOI: https://doi.org/10.1002/jpln.201200020
Fernández, L. L. y Espinosa, V. D. 2008. Bioquímica, Fisiología, Morfología y senescencia nodular; Una revisión crítica. Terra Lationamericana. 134(26):133-144
Fontanetto, H.; Keller, O.; Sillón, M.; Albrecht, J.; Giailevra, D.; Negro, C. y Belotti, L. 2011. Manejo de la fertilización de la soja en regiones templadas. Informacion Tecnica Cultivos De Verano. Campaña 201.1INTA-Estación Experimental Agropecuaria Rafaela. Publicación Miscelánea núm. 121.
Freixas , C. J. A.; Torres de la N. W.; Escobar, M. I. M. R. y Napoles, G. M. 2011. Niveles de Ureidos en plantas de soya con diferentes iniculantes y sometidas a Dedicit Hidrico. Cultivos tropicales. 3(2):35-43.
Fustec, J.; Lesuffleur, F.; Mahieu, S. and Cliquet, J. B. 2010. Nitrogen rhizodeposition of legumes. A review. Agronomy for sustainable development. 30(1):57-66. DOI: https://doi.org/10.1051/agro/2009003
Grageda, C. O. A.; Mora, M.; Castellanos, R. J. Z.; Follet, R. F. and Peña, C. J. J. 2003. Fertilizer nitrogen recovery under different tillage treatments and cropping sequences in a vertisol in central México. IAEA-TECDOC. Viena. 1354(1):39-55.
Gregg, G. L.; Orlowski, J. M. and Lee, C. D. 2015. Input‐based stress management fails to increase soybean yield in Kentucky. Crop, Forage & Turfgrass Management. 1(1):1-7. DOI: https://doi.org/10.2134/cftm2015.0175
Hartmann, T. 2012. VI. Metabolism of Organic N-Compounds. Progress in Botany/Fortschritteder Botanik: Morphology physiology Genetics Taxonomy Geobotany /Morphologie Physiologie Genetik Systematik Geobotanik. 44:154-164.
Junior, C. P.; Favarin, J. L.; Lago, B. C.; Almeida, R. E. M.; Oliveira, S. M.; Trivelin, P. C. O. and Gilabel, A. P. 2020. Nitrogen Fertilizer Recovery and Partitioning Related to Soybean Yield. Journal of Soil Science and Plant Nutrition. 20(4):2566-2578.
Kipp, M. A.; Stüeken, E. E.; Gehringer, M. M.; Sterelny, K.; Scott, J. K.; Forster, P. I. and Buick, R. 2020. Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen. Geobiology.18(2):152-166.
Lopes, J. D. S. 2015. Crescimento e compostos nitrogenados de plantas jovens noduladas de Inga macrophylla benth. fertilizadas com diferentes formas de nitrogênio. In IV Congresso de Iniciação Científica do INPA-CONIC. Amazonia. Brasil. 410-415 pp.
Lu, M. Z.; Carter, A. M. and Tegeder, M. 2021. Altering ureide transport in nodulated soybean results in whole-plant adjustments of metabolism, assimilate partitioning, and sink strength. Journal of Plant Physiology. 269(1):153613. https://doi.org/10.1016/j.jplph.2021.153613.
McCoy, J. M.; Kaur, G.; Golden, B. R.; Orlowski, J. M.; Cook, D. R.; Bond, J. A. and Cox, M. S. 2018. Nitrogen fertilization of soybean affects root growth and nodulation on two soil types in Mississippi. Communications in Soil Science and Plant Analysis. 49(2):181-187. DOI: https://doi.org/10.1080/00103624.2017.1421649
Meena, V. S.; Mishra, P. K.; Bisht, J. K. and Pattanayak, A. 2017. Agriculturally important microbes for sustainable agriculture. Applications in crop production and protection. Springer. 2:81-128. https://doi.org/10.1007/978-981-10-5343-6Ohyama. DOI: https://doi.org/10.1007/978-981-10-5343-6
Ono, Y.; Fukasawa, M.; Sueyoshi, K.; Ohtake, N.; Sato, T.; Tanabata, S. and Ohyama, T. 2021. Application of Nitrate, Ammonium, or Urea Changes the Concentrations of Ureides, Urea, Amino Acids and Other Metabolites in Xylem Sap and in the Organs of Soybean Plants (Glycine max (L.) Merr.). International journal of molecular sciences. 22(9):4573.
Ortez, O.; Salvagiotti, F; Adee, E.; Enrico, J. and Ciampitti, I. A. 2017. “Soybean: Genetic Gain × Fertilizer Nitrogen Interaction”, Kansas Agricultural Experiment Station Research Reports. 3(6):6-21. https://doi.org/10.4148/2378-5977.7438. DOI: https://doi.org/10.4148/2378-5977.7438
Saturno, D. F.; Cerezini, P.; Moreira, S. P.; Oliveira, A. B.;Oliveira, M. C. N.; Hungria, M. and Nogueira, M. A. 2017. Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. Journal of Plant Nutrition. 40(12):1690-1701. https://doi.org/10.1080/01904167.2017.1310890. DOI: https://doi.org/10.1080/01904167.2017.1310890
Santachiara, G.; Borrás, L.; Salvagiotti, F.; Gerde, J. A. and Rotundo, J. L. 2017. Relative importance of biological nitrogen fixation and mineral uptake in high yielding soybean cultivars. Plant and Soil, 418(1):191-203. DOI: https://doi.org/10.1007/s11104-017-3279-9
Senthilkumar, M.; Amaresan, N. and Sankaranarayanan, A. 2021. Colorimetric analysis of ureide-N, amino-N, and nitrate-nitrogen. Plant-Microbe Interactions. Humana, New York. 49-52 pp.
Soumare, A.; Diedhiou, A. G.; Thuita, M. and Hafidi, M. 2020. Exploiting Biological Nitrogen Fixation. A Route Towards a Sustainable Agriculture. Plants. 9(8):1-22. doi: 10.3390/plants9081011.
Stal, L. J. 2017. The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium Fischerella sp. Scientific Reports. 7(1):1-10. DOI: https://doi.org/10.1038/s41598-017-05715-0
Tamagno, S. X.; Sadras, V. O.; Haegele, J. W.; Armstrong, P. R. and Ciampitti, I. A. 2018. Interplay between nitrogen fertilizer and biological nitrogen fixation in soybean: implications on seed yield and biomass allocation. Scientific Reports. 8(1):1-11.
Tirado, T. J. L. y Alcántar, G. G. 1989. Dinámica del nitrógeno en plantas de soya. TERRA. 7(2):133-142.
Tirado, T. J. L.; Conejero, G. G. y Alcántar, G. G. 1990. Efecto del nitrógeno mineral y el déficit hídrico sobre las dos vías de asimilación del nitrógeno en plantas de soya. TERRA. 8(2):182-191.
Xia, X. Ma, C.; Dong, S.; Xu, Y. and Gong, Z. 2017. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition. 63(5):470-482. DOI: https://doi.org/10.1080/00380768.2017.1370960
Yan, Z.; Li, P.; Chen, Y.; Han, W. and Fang, J. 2016. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific reports. 6(1):1-9. DOI: https://doi.org/10.1038/srep20099
Yoneyama, T.; Fujiwara, H. and Wilson, J. M. 2020. Variations in fractionation of carbon and nitrogen isotopes in higher plants: N metabolism and partitioning in phloem and xylem. Stable isotopes. Environmental Plant Biology. New York. 99-109 pp.
Zhou, W. J.; Ji, H. L.; Zhu, J. X.; Zhang, Y. P.; Sha, L. Q.; Liu, Y. T.; Zhang, X.; Zhao, W.; Dong, Y. X.; Bai, X. L.; Lin, Y. X.; Zhang, J. H. and Zheng, X. H. 2016. The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Scientific Reports. 6(1):1-12. https://doi.org/10.1038/srep28230. DOI: https://doi.org/10.1038/srep28230
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Mexicana de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.