Silver nanoparticles in strawberry quality

Authors

  • Disraeli Eron Moreno-Guerrero Colegio de Postgraduados-Campus Veracruz. Carretera Federal Xalapa-Veracruz km 88.5, Manlio Fabio Altamirano, Veracruz, México. CP. 91690 https://orcid.org/0000-0003-0844-0038
  • Catalino Jorge López-Collado Colegio de Postgraduados-Campus Veracruz. Carretera Federal Xalapa-Veracruz km 88.5, Manlio Fabio Altamirano, Veracruz, México. CP. 91690 https://orcid.org/0000-0003-3182-6027
  • Santos Gerardo Leyva-Mir Departamento de Parasitología Agrícola-Universidad Autónoma Chapingo. Carretera Federal México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México. CP. 56230 https://orcid.org/0000-0001-7333-4317
  • Sergio Humberto Chávez-Franco Colegio de Postgraduados-Campus Montecillo. Carretera Federal México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230 https://orcid.org/0000-0002-7625-9698
  • Alejandro Alonso-López Colegio de Postgraduados-Campus Veracruz. Carretera Federal Xalapa-Veracruz km 88.5, Manlio Fabio Altamirano, Veracruz, México. CP. 91690 https://orcid.org/0000-0002-3586-8294
  • Diego Esteban Platas-Rosado Colegio de Postgraduados-Campus Veracruz. Carretera Federal Xalapa-Veracruz km 88.5, Manlio Fabio Altamirano, Veracruz, México. CP. 91690 https://orcid.org/0000-0001-8792-5230

DOI:

https://doi.org/10.29312/remexca.v16i6.3808

Keywords:

Fragaria x ananassa Duch., conservation, indicators, nanotechnology

Abstract

Silver nanoparticles, being inorganic biostimulants in strawberry crops, can serve as food preservative compounds. The present research was conducted with the aim of evaluating the effect of applying silver nanoparticles via leaves and roots at increasing doses on the quality of strawberry (Fragaria x ananassa Duch.) cultivar Festival. The experiment was established in a greenhouse in the experimental agricultural field of the Chapingo Autonomous University, Texcoco, State of Mexico, in 2022 and 2023 (latitude 19.4661, longitude -98.8538). Strawberry plants of the Festival cultivar were used as plant material and placed in an open hydroponic system. The treatments of 0, 40, 80, 120, 160 and 0, 5, 10, 15, 20 mg L-1 silver nanoparticles were applied via leaves and roots, respectively. At 70 days after the start of treatments, fresh weight, firmness, pH, degrees brix, colorimetry, vitamin C, total soluble proteins, total phenols and anthocyanins were determined. The results showed that the foliar application of silver nanoparticles increased fresh weight, firmness, pH, degrees brix, colorimetry, total phenols, and anthocyanins, and the root application of silver nanoparticles increased firmness, pH, degrees brix, colorimetry, vitamin C, total soluble proteins, total phenols, and anthocyanins. The applications of silver nanoparticles via leaves and roots conclusively increased the quality indicators of strawberry fruits of the Festival cultivar; this makes silver nanoparticles a viable alternative in Mexico’s food sovereignty.

Downloads

Download data is not yet available.

References

Abbasi, F. and Jamei, R. 2019. Effects of silver nanoparticles and silver nitrate on antioxidant responses in Echium amoenum. Russian Journal of Plant Physiology. 66(3):488-494. https://doi.org/10.1134/s1021443719030026.

Abdel-Aal, E. S. M. and Hucl, P. 1999. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheat. Cereal Chemistry Journal. 76(3):350-354. https://doi.org/10.1094/cchem.1999.76.3.350.

Ali, M.; Ahmed, A.; Shah, S. W. A.; Mehmood, T. and Abbasi, K. S. 2020. Effect of silver nanoparticle coatings on physicochemical and nutraceutical properties of loquat during postharvest storage. Journal of Food Processing and Preservation. 44(10):14808-14816. https://doi.org/10.1111/jfpp.14808.

Barikloo, H. and Ahmadi, E. 2018. Effect of nanocomposite-based packaging and chitosan coating on the physical, chemical, and mechanical traits of strawberry during storage. Journal of Food Measurement and Characterization. 12(3):1795-1817. https://doi.org/10.1007/s11694-018-9795-3

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Elatafi, E. and Fang, J. 2022. Effect of silver nitrate (AgNO3) and nano-silver (Ag-NPs) on physiological characteristics of grapes and quality during storage period. Horticulturae. 8(5):419-436. https://doi.org/10.3390/horticulturae8050419.

Girilal, M.; Fayaz, A. M.; Elumalai, L. K.; Sathiyaseelan, A.; Gandhiappan, J. and Kalaichelvan, P. T. 2018. Comparative stress physiology analysis of biologically and chemically synthesized silver nanoparticles on Solanum lycopersicum L. Colloid and Interface Science Communications. 24:1-6. https://doi.org/10.1016/j.colcom.2018.02.005.

Juárez-Moreno, K.; González, E. B.; Girón-Vázquez, N.; Chávez-Santoscoy, R.; Mota-Morales, J. and Pérez-Mozqueda, L. 2016. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Human & Amp; Experimental Toxicology. 36(9):931-948. https://doi.org/10.1177/0960327116675206.

Moazzami-Farida, S. H.; Karamian, R. and Albrectsen, B. R. 2020. Silver nanoparticle pollutants activate oxidative stress responses and rosmarinic acid accumulation in sage. Physiologia Plantarum. 1(2020):1-18. https://doi.org/10.1111/ppl.13172.

Phogat, N.; Kohl, M. and Uddin, I. 2018. Interaction of nanoparticles with biomolecules, protein, enzymes, and its applications, precision medicine. 11(2018):253-276. https://doi.org/10.1016/b978-0-12-805364-5.00011-1.

Roe, J. H. and Kuether, C. A. 1943. The determination of ascorbic acid in whole blood and urine through the 24-dinitrophenylhydrazine derivative of dehydroascorbic acid. Journal of Biological Chemistry. 147(2):399-407. https://doi.org/10.1016/s0021-9258(18)72395-8.

SIAP. 2024. Servicio De Información Agroalimentaria y Pesquera. Avance de siembras y cosechas resumen nacional. https://nube.siap.gob.mx/avance-agricola/.

Shahzad, U.; Saqib, M.; Jhanzab, H. M.; Abou Fayssal, S.; Ahmad, R. and Qayyum, A. 2024. Different concentrations of silver nanoparticles trigger growth, yield and quality of strawberry (Fragaria ananassa L.) fruits. Journal of Plant Nutrition and Soil Science. 187(5):668-677. https://doi.org/10.1002/jpln.202300284.

Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16(3):144-158. https://doi.org/10.5344/ajev.1965.16.3.144.

Sogvar, O. B.; Koushesh-Saba, M.; Emamifar, A. and Hallaj, R. 2016. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science & Emerging Technologies. 35(2016):168-176. https://doi.org/10.1016/j.ifset.2016.05.005.

Taha, I.; Zaghlool, A.; Nasr, A.; Nagib, A.; El-Azab, I.; Mersal, G. A. M.; Ibrahim, M. M. and Fahmy, A. 2022. Impact of starch coating embedded with silver nanoparticles on strawberry storage time. Polymers. 14(7):1439-1455. https://doi.org/10.3390/polym14071439.

Vishal, S.; Gopi, V.; Madhumitha, B.; Anitha, M.; Francis, N.; Ranchana, P.; Karthikeyan, P.; Suresh, V. and Kumar, D. 2023. Association analysis for biochemical and physiological characters in strawberry (Fragaria x ananassa Duch.) Coated with silver nitrate and silver nanoparticles. Biological Forum-An International Journal. 15(5):517-519.

Wang, X.; Xie, H.; Wang, P. and Yin, H. 2023. Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials. 16(8):3097-3118. https://doi.org/10.3390/ma16083097.

Zhang, C.; Li, W.; Zhu, B.; Chen, H.; Chi, H.; Lin, L.; Qin, Y. and Xue, J. 2018. The quality evaluation of postharvest strawberries stored in nano-ag packages at refrigeration temperature. Polymers. 10(8):894-911. https://doi.org/10.3390/polym10080894.

Published

2025-09-23

How to Cite

Moreno-Guerrero, Disraeli Eron, Catalino Jorge López-Collado, Santos Gerardo Leyva-Mir, Sergio Humberto Chávez-Franco, Alejandro Alonso-López, and Diego Esteban Platas-Rosado. 2025. “Silver Nanoparticles in Strawberry Quality”. Revista Mexicana De Ciencias Agrícolas 16 (6). México, ME:e3808. https://doi.org/10.29312/remexca.v16i6.3808.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>