Tomato production under protected conditions with foliar applications of metal nanoparticles
DOI:
https://doi.org/10.29312/remexca.v15i3.3667Keywords:
Solanum lycopersicum, nutritional content, lycopene contentAbstract
Tomato (Solanum lycopersicum, L.) is the most important vegetable in the world in terms of production volumes, which will have to continue to increase to meet future consumption needs. In this regard, the use of nanotechnology could make the supply of nutrients to plants more efficient and improve and increase agricultural production. The objective of the study was to determine the effect of foliar application of Zn, Cu, and Fe nanoparticles on tomato production and quality. In 2021, a Roma-type tomato crop was established under protected agriculture. The treatments consisted of the individual and combined foliar application of nanoparticles of Zn, Fe, Cu, Zn+Fe, Zn+Cu, Fe+Cu, Zn+Fe+Cu, plus a control without application. It was found that the individual application of the nanoparticles did not improve tomato production, however, the combined supply increased the yield. The highest production was recorded with Zu+Fe+Cu, which was 66% higher than the control plants, with this treatment the lycopene content also doubled (2.23 mg g-1 dry matter). The nanoparticles increased the nutrient content within the maximum limit allowed for consumption. Therefore, the application of micronutrient nanoparticles supplied in combination is a viable alternative to improve tomato yield and quality.
Downloads
References
Ahmed, R.; Yusoff-Abd, S. M.; Uddin, M. K.; Quddus, M. A. and Hossain, M. A. M. 2021. Recent trends in the foliar spraying of zinc nutrient in tomato production. Agronomy. 11(10):1-15. Doi.org/10.3390/agronomy11102074.
AOAC. 2005. Oficial Methods of Analysis. 18th Ed. AOAC international, Gaithersburg, MD. Method 2006. 03:1-13 pp.
Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15(1):15-22. Doi.org/10.1007/s10311-016-0600-4.
El-Raie, A.; Hassan, H. E.; El-Rahman, A. A. and Arafat, A. A. 2015. Response of tomato plants to different rates of iron nanoparticles spraying as foliar fertilization. Misr J. Agric. Eng. 32(3):1295-1312. Doi.org/10.21608/mjae.2015.98629.
FAO. 2017. Food and Agriculture Organization of the Unites Nation. The future of food and agriculture Trends and challenges. Rome. 9-20 pp. https://www.fao.org/ 3/i6881s/i6881s.pdf.
Fernández, C.; Pitre, A.; Llobregat, M. J. y Rondón, Y. 2007. Evaluación del contenido de licopeno en pastas de tomate comerciales. Inf. Tecnol. 18(3):31-38. Doi.org/10.4067/S0718-07642007000300005.
García, E. A. 2004. Modificación al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México (UNAM). México, DF. 90 p.
Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P. L. and Walkowiak, J. 2020. Lycopene in tomatoes and tomato products. Open chem. 18(1):752-756. Doi.org/10.1515/chem-2020-0050.
Hafeez, B. M. K. Y.; Khanif, Y. M. and Saleem, M. 2013. Role of zinc in plant nutritiona review. Am. J. Exp. Agric. 3(2):374-391.
Hortalizas A. 2017. Tomato primus. 1 p. http://www.semillasmexico.com/wp-content/uploads/2017/04/PRIMUS-LF.pdf.
Karuppanapandian, T.; Moon, J. C.; Kim, C.; Manoharan, K. and Kim, W. 2011. Reactive oxygen species in plants: their gerenation, signal traduction, and scavenging mechanics. Aust. J. Crop Sci. 5(6):709-725.
Liu, R. and Lal, R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total environ. 514(1):131-139. https://doi.org/10.1016/ j.scitotenv.2015.01.104.
Morales-Díaz, A. B.; Ortega-Ortíz, H.; Juárez-Maldonado, A.; Cadenas-Pliego, G.; González-Morales, S. and Benavides-Mendoza, A. 2017. Application of nanoelements in plant nutrition and its impact in ecosystems. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(1):013001.
NIH. 2022. National Institutes of Health. Dietary Reference Intakes (DRI). Tolerable upper intake levels, elements. food and nutrition board, national. Academies. https://www.ncbi.nlm.nih.gov/books/NBK545442/table/appJ-tab9/?report=objec tonly.
Perveen, R.; Suleria, H. A. R.; Anjum, F. M.; Butt, M. S.; Pasha, I. and Ahmad, S. 2015. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims a comprehensive review. Crit. Rev. Food Sci. Nutr. 55(7):919-929. Doi.org/10.1080/10408398.2012.657809.
Rai, M.; Ingle, A. P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I. and Silva, S. S. 2018. Copper and copper nanoparticles: role in management of insect pests and pathogenic microbes. Nanotechnol. Rev. 7(4):303-315. Doi.org/10.1515/ntrev-2018-0031.
Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W. N. and Biswas, P. 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 7(12):1584-1594. Doi.org/10.1039/c5mt00168d.
SAS. 2017. Statistical Analysis Systems. SAS/STAT User’s guide, version 9.4. SAS Institute Inc. North Caroline, USA.
Seleiman, M. F.; Almutairi, K. F.; Alotaibi, M.; Shami, A.; Alhammad, B. A. and Battaglia, M. L. 2020. Nano fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use. Plants. 10(2):1-27.
Skowroñska, M. and Filipek, T. 2014. Life cycle assessment of fertilizers: a review. Int agrophys. 28(1):101-110.
Van-Nguyen, D.; Mai-Nguyen, H.; Thanh-Le, N.; Huu-Nguyen, K.; Thi-Nguyen, H.; Mai-Le, H.; Trung-Nguyen, A.; Thu-Dinhm, N. H.; Anh-Hoang, S. and Van-Ha, C. 2022. Copper nanoparticle enhances plant growth and grain yield in maize under drought stress conditions. J. Plant Growth Reg. 41(1):364-375. Doi.org/10.1007/s00344-021-10301-w.
Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N. A. and Munné-Bosch, S. 2019. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. 289(1):1-11. Doi.org/10.1016/j.plantsci.2019.110270.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.