Acetolactate synthase and acetyl coenzyme A carboxylase inhibiting herbicides in Avena fatua

Authors

  • Andrés González-Ruiz Universidad Autónoma de Sinaloa-Facultad de Agronomía. Carretera Culiacán-Eldorado km 17.5, Culiacán, Sinaloa, México. CP. 80398
  • Carlos Enrique Ail-Catzim Universidad Autónoma de Baja California-Instituto de Ciencias Agrícolas. Carretera Delta Oaxaca s/n, Ejido Nuevo León, Mexicali, Baja California. CP. 21705
  • Carlos Alfonso López-Orona Universidad Autónoma de Sinaloa-Facultad de Agronomía. Carretera Culiacán-Eldorado km 17.5, Culiacán, Sinaloa, México. CP. 80398.
  • Raymundo Medina-López Universidad Autónoma de Sinaloa-Facultad de Agronomía. Carretera Culiacán-Eldorado km 17.5, Culiacán, Sinaloa, México. CP. 80398.
  • Mitzi Dayanira Estrada-Acosta Universidad Autónoma de Sinaloa-Facultad de Agronomía. Carretera Culiacán-Eldorado km 17.5, Culiacán, Sinaloa, México. CP. 80398
  • Guadalupe Alfonso López-Urquídez Universidad Autónoma de Sinaloa-Facultad de Agronomía. Carretera Culiacán-Eldorado km 17.5, Culiacán, Sinaloa, México. CP. 80398

DOI:

https://doi.org/10.29312/remexca.v15i7.3506

Keywords:

biological effectiveness, resistance, weed control, yield

Abstract

Avena fatua is a very important weed in wheat worldwide. This also occurs in the Mexicali Valley, BC., where acetolactate synthase- and acetyl coenzyme A carboxylase-inhibiting herbicides are used to control this grass. In the search for the best alternative for the producer, this research aimed to estimate the efficiency of these two groups of herbicides to control Avena fatua. The trials were carried out during the 2021-2022 autumn-winter cycle in three ejidos in said Valley (República Mexicana, Nayarit, and Sombrerete). The experiments included herbicides representative of each group. Acetolactate synthase was composed of iodosulfuron, flucarbazone, and pyroxsulam and acetyl coenzyme A carboxylase was integrated by fenoxaprop and pinoxaden. The experiments were arranged in randomized complete blocks with four replications. An analysis of variance was carried out for weed control and density and crop yield; the effectiveness of herbicides was measured using a non-linear regression model. Weed control efficiency and weed index were estimated. The results indicate that the best group of herbicides was acetyl coenzyme A carboxylase. For example, in the projection of the level of damage, in the República Mexicana experiment, we have fenoxaprop= 77.16+0.78*DAA-0.009*DAA^2, that is, the damage to the weed increases slightly over time, at least until the 56 DAA. On the contrary, mesosulfuron loses efficiency of 6.41% daily in the second stage of the evaluated period: 138.20-6.41*DAA+0.07*DAA^2. In efficiency at the same site, fenoxaprop has 83.15% and Iodosulfuron only 37.5%.

Downloads

Download data is not yet available.

References

Addinsoft. 2022. XLSTAT Statistical and Data Analysis Solution. New York. https://www.xlstat.com.

Baghestani, M. A.; Zand, E.; Soufizadeh, S.; Beheshtian, M.; Haghighi, A.; Alireza, B.; Birgani, D. G.; Daryoush, G. B. and Deihimfard, R. 2008. Study on the efficacy of weed control in wheat (Triticum aestivum L.) with tank mixtures of grass herbicides with broadleaved herbicides. Crop Protection. 27(1):104-111. https://doi.org/10.1016/j.cropro.2007.04.013.

Cobb, A. H. and Reade, J. P. 2010. Inhibitor of acetolactate Synthase and Inhibitor ACCasa. Herbicides and plant physiology. Editors: Chris Ka Ulbars and Gerard Vaillancourt. Ed: Alberta. 25-44 pp.

Cruz-Hipolito H.; Osuna, M. D.; Dominguez-Valenzuela, J. A.; Espinoza, N. N. and De Prado, R. 2011. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. Journal of agricultural and food chemistry. 59(13):7261-7267. Doi: 10.1021/jf201074k.

Gao, W. T. and Su, W. H. 2024. Weed management methods for herbaceous field crops: a review. Agronomy. 14(486):1-23. https://doi.org/10.3390/agronomy14030486.

Gill, G. S. and Kumar, V. K. 1969. Weed index, a new method for reporting weed control trials. Indian Journal of Agronomy. 14(2):96-98.

Herrera Andrade, J. L.; Guzmán-Ruiz, S. C. y Loza-Venegas, E. 2010. Guía técnica para el área de influencia del campo experimental Valle de Mexicali, BC. y San Luis Río Colorado, Sonora. INIFAP-CIRNO. Mexicali, BC. Guía técnica # 1. 26-27 pp.

Hassanpour-bourkheili, S.; Gherekhloo, J.; Kamkar, B. and Ramezanpour, S. S. 2021. Mechanism and pattern of resistance to some ACCase inhibitors in winter wild oat (Avena sterilis subsp. ludoviciana (Durieu) Gillet & Magne) biotypes collected within canola fields. Crop Protection. 143(1):1-9. https://doi.org/10.1016/j.cropro.2021.105541.

Heap, I. M. 2020. Base de datos internacional de malezas resistentes a los herbicidas. www.weedscience.org.copyright©1993-2024. WeedScience.org.

Lonhienne, T.; Cheng, Y.; García, M. D.; Hu, S. H.; Low, Y. S.; Scheck, G.; Williams, G. M.; and Guddat, L. W. 2022. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nature communicatios. 13(1):1-11. https://doi.org/10.1038/ s41467-022-31023-x.

Mani, V. S.; Malla, M. L.; Gautam, K. C. and Bhagwandas, B. 1973. Weed killing chemical in potato cultivation. 23(8):17-18.

Rosales-Robles, E. y Sánchez de la Cruz R. 2006. Clasificación y uso de los herbicidas por su modo de acción. Campo experimental Rio Bravo-INIFAP. Folleto técnico 35. 1-16 pp. https://www.compucampo.com/tecnicos/clasificacionherbs.pdf.

Scursoni, J. A.; Martín, A.; Catanzaro, M. P.; Quiroga, J. and Goldar, F. 2011. Evaluation of post emergence herbicides for the control of wild oat (Avena fatua L.) in wheat and barley in Argentina. Crop Protection. 30(1):18-23. https://doi.org/10.1016/j.cropro.2010.09.003.

SIMARBC. 2022. Sistema de Información para el manejo del agua de riego en Baja California (SIMARBC). Red Estatal de Estaciones Agroclimatológicas. http://apps.sedagro.gob.mx/simarbc/-P-MODAL-/OAoAANN~ufd6V1B5bElndlloAgA.

Tafoya-Razo, J. A.; Mora-Munguía, S. A. and Torres-García, J. R. 2022. Diversity of herbicide resistance mechanisms of Avena fatua L. to Acetyl CoA Carboxylase Inhibiting Herbicides in the Bajio, Mexico. Plants. 11(13):1-13. Doi: 10.3390/plants11131644.

Takano, H. K.; Ovejero, R. F. L.; Belchior, G. G.; Maymone, G. P. L. and Dayan, F. E. 2020. ACCase inhibiting herbicides: mechanism of action, resistance evolution and stewardship. Scientia Agricola. 78(1):1-11. Doi: http://dx.doi.org/10.1590/1678-992X-2019-0102.

Tidemann, B. D.; Charles, M. G.; Geddes, C. M.; Hugh, J. B. and Beckie, H. J. 2021. Avena fatua and Avena sterilis. En: biology and management of problematic crop weed species. 43-66 pp. https://doi.org/10.1016/B978-0-12-822917-0.00015-X.

Torres-García, J. R.; Tafoya-Razo, J. A.; Velázquez-Márquez, S. and Tiessen, A. 2018. Double herbicide resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase and ALS inhibitors. Acta Physiol. Plant. 40(1):11-12. https://doi.org/10.1007/s11738-018-2691-y.

Yu, Q.; Powles, S. B. 2014. Metabolism-based herbicide resistance and cross resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol. 166(3):1106-1118. https://doi.org/10.1104/pp.114.242750.

Published

2024-12-05

How to Cite

González-Ruiz, Andrés, Carlos Enrique Ail-Catzim, Carlos Alfonso López-Orona, Raymundo Medina-López, Mitzi Dayanira Estrada-Acosta, and Guadalupe Alfonso López-Urquídez. 2024. “Acetolactate Synthase and Acetyl Coenzyme A Carboxylase Inhibiting Herbicides in Avena Fatua”. Revista Mexicana De Ciencias Agrícolas 15 (7). México, ME:e3506. https://doi.org/10.29312/remexca.v15i7.3506.

Issue

Section

Articles

Most read articles by the same author(s)