Calidad de luz de lámparas fluorescentes en el crecimiento de pepino y severidad de Oidium sp.
DOI:
https://doi.org/10.29312/remexca.v13i6.2800Palabras clave:
Cucumis sativus L., cenicilla, luz azul, luz rojaResumen
La calidad de la luz afecta el desarrollo de plantas, por los efectos específicos sobre la fotosíntesis, fotomorfogénesis, procesos fisiológicos y bioquímicos. También tiene un papel importante en las interacciones planta-patógeno y controla varias actividades metabólicas de hongos que determinan su patogenicidad y severidad. Se realizaron tres experimentos bajo diseños completamente al azar para conocer la influencia de lámparas fluorescentes de luz blanca fría, neutra y cálida, sobre la morfología y crecimiento de plantas de pepino (Cucumis sativus L.) y la severidad de la cenicilla (Oidium sp.). En las cámaras de crecimiento utilizadas, la densidad de flujo de fotones fotosintéticos (DFFF) promedió 305 μmol m-2 s-1, pero los parámetros espectrales relacionados con la luz roja (R:LBC> LBN> LBF) y la luz azul (A:LBF> LBN> LBC) fueron contrastantes. La mayor cantidad absoluta de luz R (122.04 μmol m-2 s-1), cantidad relativa de R:DFFF (40.09%) y cantidad proporcional de R: A (2.67) y R:RL (3.25) de LBC promovieron mayor altura, área foliar, peso fresco y seco de hojas, tallo y raíz de las plantas, mientras que, la mayor cantidad absoluta de luz A (84.19 μmol m-2 s-1), cantidad relativa de A:DFFF (27.48%) y cantidad proporcional de A:R (1.04) y A:RL (2.65) de LBF indujeron menor altura de planta y mayor grosor de tallo e índice de verdor foliar. Los parámetros espectrales de LBF también perturbaron el desarrollo de Oidium sp., que se reflejó en menor severidad de la cenicilla en comparación con LBN o LBC.
Descargas
Citas
Ayala, T. F.; Yáñez, J. M. G.; Partida, R. L.; Ruiz, E. F. H.; Campos, G. H.; Vásquez, M. O.; Velázquez, A. T. J. y Díaz, V. T. 2015. Producción de pepino en ambientes diferenciados por mallas de sombreo fotoselectivo. ITEA. 1(111):3-17. https://doi.org/10.12706 /itea.2015.001. DOI: https://doi.org/10.12706/itea.2015.001
Casal, J. J. 2013. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 1(64):403-427. https://doi.org/10.1146/annurev-arplant-050312-120221. DOI: https://doi.org/10.1146/annurev-arplant-050312-120221
Chen, C. H.; Ringelberg, C. S.; Gross, R. H.; Dunlap, J. C. and Loros, J. J. 2009. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 8(28):1029-1042. https://dx.doi.org/10.1038%2Femboj.2009.54. DOI: https://doi.org/10.1038/emboj.2009.54
Chen, L.; Zhang, K.; Gong, X.; Wang, H.; Gao, Y.; Wang, X.; Zeng, Z. and Hu, Y. 2020. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. J. Integr. Agric. 1(19):108-119. https://doi.org/10.1016/S2095-3119(19)62633-X.
Chen, X. L.; Guo, W. Z.; Xue, X. Z.; Wang, L. C. and Qiao, X. J. 2014. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci. Hortic. 1(172):168-175. https://doi.org/10.1016/j.scienta.2014.04.009. DOI: https://doi.org/10.1016/j.scienta.2014.04.009
Cope, K. R. and Bugbee, B. 2013. Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortSci. 4(48):504-509. https://doi.org/10.21273/HORTSCI.48.4.504.
Damayanthi, R. N. K. and Decoteau, D. R. 1998. Involvement of gibberellins in phytochrome-regulated stem and petiole elongation in watermelon plants. HortSci. 3(33):493-494.
Demotes, M. S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi, T. S.; Crespel, L.; Morel, P.; Huché, T. L.; Boumaza, R.; Vian, A.; Guérin, V.; Leduc, N. and Sakr, S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 1(121):4-21. https://doi.org/10.1016/j.envexpbot.2015.05.010. DOI: https://doi.org/10.1016/j.envexpbot.2015.05.010
Ding, Y.; He, S.; Silva, J. A. T.; Li, G. and Tanaka, M. 2010. Effects of a new light source (cold cathode fluorescent lamps) on the growth of tree peony plantlets in vitro. Sci. Hortic. 125(2):167-169. https://doi.org/10.1016/j.scienta.2010.03.019. DOI: https://doi.org/10.1016/j.scienta.2010.03.019
Fan, X. X.; Xu, Z. G.; Liu, X. Y.; Tang, C. M.; Wang, L. W. and Han, X. I. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 1(153):50-55. https://doi.org/10.1016/j. scienta.2013.01.017. DOI: https://doi.org/10.1016/j.scienta.2013.01.017
Fukuda, N.; Ajima, C.; Yukawa, T. and Olsen, J. E. 2016. Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environ. Exp. Bot. 1(121):102-111. https://doi.org/10.1016/ j.envexpbot.2015.06.014. DOI: https://doi.org/10.1016/j.envexpbot.2015.06.014
Gupta, S. D. and Jatothu, B. 2013. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 3(7):211-220. http://dx.doi.org/10.1007/s11816-013-0277-0. DOI: https://doi.org/10.1007/s11816-013-0277-0
Heo, J.; Lee, C.; Chakrabarty, D. and Paek, K. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regul. 3(38):225-230. https://doi.org/10.1023/A: 1021523832488. DOI: https://doi.org/10.1023/A:1021523832488
Hernández, R.; Eguchi, T.; Deveci, M. and Kubota, C. 2016. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci. Hortic. 1(213):270-280. http://doi.org/10.1016/j.scienta. 2016.11.005. DOI: https://doi.org/10.1016/j.scienta.2016.11.005
Hernández, R. and Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 1(121):66-74. http://dx.doi.org/10.1016/j.envexpbot.2015.04.001. DOI: https://doi.org/10.1016/j.envexpbot.2015.04.001
Hogewoning, S. W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; Van Ieperen, W. and Harbinson, J. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 11(61):3107-3117. http://doi.org/10.1093/jxb/erq132. DOI: https://doi.org/10.1093/jxb/erq132
Hu, J.; Dai, X. and Sun, G. 2016. Morphological and physiological responses of Morus alba seedlings under different light qualities. Not. Bot. Horti Agrobot. Cluj-Napoca. 2(44):382-392. https://doi.org/10.15835/nbha44210486. DOI: https://doi.org/10.15835/nbha44210486
Idnurm, A. and Heitman, J. 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 4(3):615-626. https://dx.doi.org/10.1371%2 Fjournal.pbio.0030095. DOI: https://doi.org/10.1371/journal.pbio.0030095
Javanmardi, J. and Emami, S. 2013. Response of tomato and pepper transplants to light spectra provided by light emitting diodes. Inter. J. Veg. Sci. 2(19):138-149. http://doi.org/10.1080/ 19315260.2012.684851. DOI: https://doi.org/10.1080/19315260.2012.684851
Jing, X.; Wang, H.; Gong, B.; Liu, S.; Wei, M.; Ai, X.; Li, Y. and Shi, Q. 2018. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. Plant Physiol. Biochem. 1(124):77-87. https://doi.org/10. 1016/j.plaphy.2017.12.039. DOI: https://doi.org/10.1016/j.plaphy.2017.12.039
Kurepin, L. V.; Emery, R. J. N.; Pharis, R. P. and Reid, D. M. 2007. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J. Exp. Bot. 58(8):2145-2157. https://doi.org/10.1093/jxb/ erm068. DOI: https://doi.org/10.1093/jxb/erm068
Li, C.; Xu, Z. G.; Dong, R. Q.; Chang, S.; Wang, L. Z.; Khalil, U. R. M. and Tao, J. M. 2017. An RNA-seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red LED light, and white fluorescent light. Front. Plant Sci. 1(8):1-16. https://doi.org /10.3389/fpls.2017.00078. DOI: https://doi.org/10.3389/fpls.2017.00078
Li, T. and Yang, Q. 2015. Advantages of diffuse light for horticultural production and perspectives for further research. Front. Plant Sci. 1(6):1-5. https://doi.org/10.3389/fpls.2015.00704. DOI: https://doi.org/10.3389/fpls.2015.00704
Lin, K. H.; Huang, M. Y.; Huang, W. D.; Hsu, M. H.; Yang, Z. W. and Yang, C. M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 1(150):86-91. https://doi.org/10.1016/j.scienta.2012.10.002. DOI: https://doi.org/10.1016/j.scienta.2012.10.002
Neff, M. C.; Fankhauser, J. and Chory, J. 2000. Light: an indicator of time and place. Genes Develop. 3(14):257-271.
Nelson, J. A. and Bugbee, B. 2015. Analysis of environmental effects on leaf temperature under sunlight, high pressure sodium and light emitting diodes. PLoS ONE. 10(10):1-13. https://doi.org/10.1371/journal.pone.0138930. DOI: https://doi.org/10.1371/journal.pone.0138930
Purschwitz, J.; Muller, S.; Kastner, C. and Fischer, R. 2006. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 6(9):566-571. https://doi.org/10.1016/j.mib.2006.10.011. DOI: https://doi.org/10.1016/j.mib.2006.10.011
Rahman, M. Z.; Honda, Y. and Arase, S. 2003. Red-light induced resistance in broad bean (Vicia faba L.) to leaf spot disease caused by Alternaria tenuissima. J. Phytopathol. 2(151):86-91. https://doi.org/10.1046/j.1439-0434.2003.00685.x. DOI: https://doi.org/10.1046/j.1439-0434.2003.00685.x
Runkle, E. S.; Padhye, S. R.; Oh, W. and Getter, K. 2012. Replacing incandescent lamps with compact fluorescent lamps may delay flowering. Sci. Hortic. 1(143):56-61. https://doi.org/ 10.1016/j.scienta.2012.05.028. DOI: https://doi.org/10.1016/j.scienta.2012.05.028
Saavedra, E.; Rey, F. J. y Luyo, J. 2016. Sistemas de iluminación, situación actual y perspectivas. TECNIA. 2(26):44-62. http://dx.doi.org/10.21754/tecnia.v26i2.57. DOI: https://doi.org/10.21754/tecnia.v26i2.57
Snowden, M. C.; Cope, K. R. and Bugbee, B. 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS One. 10(11):e0163121. http://dx.doi.org/10.1371/journal.pone.0163121. DOI: https://doi.org/10.1371/journal.pone.0163121
Song, J.; Meng, Q. W.; Du, W. F. and He, D. 2017. Effects of light quality on growth and development of cucumber seedlings in controlled environment. Inter. J. Agric. Biol. Eng. 3(10):312-318. http://dx.doi.org/10.3965/j.ijabe.20171003.2299.
Staal, M.; Elzenga, J. T. M.; Van Elk, A. G.; Prins, H. B. A. and Van Volkenburgh, E. 1994. Red and blue light-stimulated proton efflux by epidermal leaf-cells of the Argenteum mutant of Pisum sativum. J. Exp. Bot. 9(45):1213-1218. http://dx.doi.org/10.1093/jxb/45.9.1213. DOI: https://doi.org/10.1093/jxb/45.9.1213
StatSoft. 2004. Statistica (data analysis software system), version 7. www.statsoft.com.
Suzuki, T.; Nishimura, S.; Yagi, K.; Nakamura, R.; Takikawa, Y.; Matsuda, Y.; Kakutani, K. and Nonomura, T. 2018. Effects of light quality on conidiophore formation of the melon powdery mildew pathogen Podosphaera xanthii. Phytoparasitica. 1(46):31-43. https://doi.org/10.1007/s12600-017-0631-9. DOI: https://doi.org/10.1007/s12600-017-0631-9
Tisch, D. and Schmoll, M. 2010. Light regulation of metabolic pathways in fungi. Appl. Microbiol Biotechnol. 5(85):1259-1277. https://dx.doi.org/10.1007%2Fs00253-009-2320-1. DOI: https://doi.org/10.1007/s00253-009-2320-1
Van Volkenburgh, E. 1999. Leaf expansion -an integrating plant behaviour. Plant Cell Environ. 12(22):1463-1473. http://dx.doi.org/10.1046/j.1365-3040.1999.00514.x. DOI: https://doi.org/10.1046/j.1365-3040.1999.00514.x
Wang, H.; Jiang, Y. P.; Yu, H. J.; Xia, X. J.; Shi, K.; Zhou, Y. H. and Yu, J. Q. 2010. Light quality affects incidence of powdery mildew, expression of defense-related genes and associated metabolism in cucumber plants. Eur. J. Plant Pathol. 1(127):125-135. https://doi.org/ 10.1007/s10658-009-9577-1. DOI: https://doi.org/10.1007/s10658-009-9577-1
Wang, J.; Lu, W.; Tong, Y. and Yang, Q. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 1(7):1-10. https://doi.org/10.3389 /fpls.2016.00250. DOI: https://doi.org/10.3389/fpls.2016.00250
Wang, X. Y.; Xu, X. M. and Cui, J. 2014. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica. 2(53):213-222. https://doi.org/10.1007/s11099-015-0083-8. DOI: https://doi.org/10.1007/s11099-015-0083-8
Xiaoying, L.; Shirong, G.; Taotao, C.; Zhigang, X. and Tezuka, T. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 22(11):6169-6177. https://doi.org/10.5897/ AJB11.1191. DOI: https://doi.org/10.5897/AJB11.1191
Xu, H.; Fu, Y.; Li, T. and Wang, R. 2017. Effects of different LED light wavelengths on the resistance of tomato against Botrytis cinerea and the corresponding physiological mechanisms. J. Integr. Agric. 16(1):106-114. https://doi.org/10.1016/S2095-3119(16)61435-1. DOI: https://doi.org/10.1016/S2095-3119(16)61435-1
Yan, Z.; He, D.; Niu, G. and Zhai, H. 2019. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci. Hortic. 1(248):138-144. https://doi.org/10.1016/j.scienta.2019.01.002.
Yang, Z.; He, W.; Mou, S.; Wang, X.; Chen, D.; Hu, X.; Chen, L. and Bai, J. 2017. Plant growth and development of pepper seedlings under different photoperiods and photon flux ratios of red and blue LEDs. Trans. Chin. Soc. Agri. Eng. 33(17):173-180. https://doi.org/10. 11975/j.issn.1002-6819.2017.17.023.
Yu, W.; Liu, Y., Song, L.; Jacobs, D. F.; Du, X.; Ying, Y.; Shao, Q. and Wu, J. 2017. Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. J. Plant Growth Regul. 1(36):148-160. https://doi.org/10.1007/s00344-016-9625-y. DOI: https://doi.org/10.1007/s00344-016-9625-y
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Mexicana de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.