Effect of nano-biofortification with iron on yield and bioactive compounds in cucumber
DOI:
https://doi.org/10.29312/remexca.v13i28.3272Keywords:
Cucumis sativus L., bioactive compounds, nanoparticlesAbstract
Iron (Fe) is an indispensable micronutrient for living beings. However, and despite the fact that it is one of the most abundant metals in the earth’s crust, there is low availability for crops, causing a deficit in the diet of around two million people in the world. Nano-biofortification can mitigate this deficiency since its application in crops improves the biosynthesis of bioactive compounds and promotes their bioaccumulation. The objective of this research was to evaluate the effect of foliar application of Fe nanoparticles (Fe2O3 NPs) on the yield and biosynthesis of bioactive compounds in cucumber fruits. Four treatments were applied via foliar: 0, 50, 75 and 100 mg L-1 of Fe2O3 NPs. Foliar spraying with Fe2O3 NPs improved the yield and biosynthesis of bioactive compounds in cucumber fruits, increasing the yield by 38.99%, the biosynthesis of compounds by 30.18% and an increase of 23.26% of Fe in fruits. Foliar spraying of Fe2O3 NPs is an alternative to increase agricultural production, decreasing Fe deficiency, while improving the biosynthesis of bioactive compounds in order to ensure food and nutrition security.
Downloads
References
Abbasifar, A.; Shahrabadi, F. and ValizadehKaji, B. 2020. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 43(8):1104-1118.
Blanco, R. R. and Vaquero, M. P. 2018. Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Sci. Emerging Technol. 51(1):126-138. DOI: https://doi.org/10.1016/j.ifset.2018.04.015
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248- 254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
Brand, W. W.; Cuvelier, M. E. and Berset, C. L. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1):25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Cardeño, Á. V.; Molina, M. C.; Miranda, I.; García, G. T.; Morales, J. M. and Stashenko, E. E. 2007. Actividad antioxidante y contenido total de fenoles de los extractos etanólicos de Salvia aratocensis, Salvia sochensis, Bidens reptons y Montanoa ovalifolia. Scientia et Technica. 13(33):205-207.
Drostkar, E. Talebi, R. and Kanouni, H. 2016. Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. J. Res. Ecol. 4(2):221-228.
Elkhatim, K. A.; Elagib, R. A. and Hassan, A. B. 2018. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 6(5):1214-1219. DOI: https://doi.org/10.1002/fsn3.660
Gutiérrez, R. N. J.; Palacio, M. A.; Sánchez, Ch. E.; Muñoz, M. E.; Chávez, M. C.; Ojeda, B. D. L. and Flores, C. M. A. 2021. Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 49(3):12437-12437.
Hasanuzzaman, M.; Bhuyan, M. B.; Raza, A.; Hawrylak, N. B.; Matraszek, G. R.; Mahmud, J; Nahar, K. and Fujita, M. 2020. Selenium in plants: boon or bane? Environ. Exp. Bot. 178(10):1-41.
Hu, J.; Guo, H.; Li, J.; Wang, Y.; Xiao, L. and Xing, B.2017. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnol. 15(1):1-12. DOI: https://doi.org/10.1186/s12951-017-0286-1
Kandpal, N. D.; Sah, N.; Loshali, R.; Joshi R. and Prasad, J. 2014. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J. Sci. Industrial Res. 73(2):87-90.
Konate, A.; Wang, Y.; He, X.; Adeel, M.; Zhang, P.; Ma, Y.; Ding, Y.; Zhang, J.; Yang, J.; Kizito, S.; Rui, Y. and Zhang, Z. 2018. Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus L). Ecotoxicol. Environ. Safety. 165(9):547-554.
Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A. J.; Ma, C.; Bai, T.; Hao, Y. and Rui, Y. 2021. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollution. 269(1):116134-116146.
Lowry, G. V.; Avellan, A. and Gilbertson, L. M. 2019. Opportunities and challenges for nanotechnology in the Agri-Tech Revolution. Nature Nanotechnol. 14(6):517-522.
Lu, K.; Shen, D.; Liu, X.; Dong, S.; Jing, X.; Wu, W. and Mao, L. 2020. Uptake of iron oxide nanoparticles inhibits the photosynthesis of the wheat after foliar exposure. Chemosphere. 259(1):127445-127453.
Mogazy, A. M.; Mohamed, H. I. and Mahdy, O. M. 2022. Calcium and iron nanoparticles: a positive modulator of innate immune responses in strawberry against botrytis cinerea. Process Biochem. 115(1):128-145.
Moradbeygi, H.; Jamei, R.; Heidari, R. and Darvishzadeh, R. 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in dracocephalum moldavica L. plant under salinity stress. Sci. Hortic. 272(1):109537-109545.
Mosa, K. A.; Naggar, M.; Ramamoorthy, K.; Alawadhi, H.; Elnaggar, A.; Wartanian, S.; Ibrahim, E. and Hani, H. 2018. Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis Sativus L.) Frontiers Plant Sci. 9(7):1-13.
Preciado, R. P.; Valenzuela, G. A. A.; Pérez, G. L. A.; González, S. U.; Ortiz, D. S. A.; Buendía, G. A.; Edgar, O. y Rueda, P. 2022. La biofortificación foliar con hierro mejora la calidad nutracéutica y la capacidad antioxidante en lechuga. Terra Latinoam. 40(1):1-7.
Rawat, M.; Nayan, R.; Negi, B.; Zaidi, M. G. H. and Arora, S. 2017. Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. Juncea. Plant Physiol. Biochem. 118(1):274-284. DOI: https://doi.org/10.1016/j.plaphy.2017.06.021
Rui, M. Ma, C. Hao, Y. Guo, J. Rui, Y. Tang, X. and Sperotto, R. A. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers Plant Sci. 7(9):1-10. DOI: https://doi.org/10.3389/fpls.2016.00815
Sega, D.; Ciuffreda, G.; Mariotto, G.; Baldan, B.; Zamboni, A. and Varanini, Z. 2019. FePO4 nanoparticles produced by an industrially scalable continuous-flow method are an available form of P and Fe for cucumber and maize plants. Scientific Reports. 9(1):1-13.
Shakoor, N.; Adeel, M.; Zain, M.; Zhang, P.; Arslan, M.; Farooq, T.; Zhou, P.; Azeem, I.; Rizwan, M.; Guo, K.; Jilani, G.; Ahmar, S.; Maqbool, S. and Ming, X. 2022. Iron-based nanoparticles enhances its nutritional quality by trigging the essential elements. NanoImpact. 25(1):100388-100393.
Shang, F. F.; Zhao, X. P.; Chang, W. U.; Li, Y. W. U.; Hou, Q. and Wang, Q. 2013. Effects of chlorpyrifos stress on soluble proteins and some related metabolic enzyme activities in different crops. J. China Agricultural University. 18(4):105-110.
Singleton, V. L.; Orthofer, R. and Lamuela, R. R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299(14):152-178. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Steiner, A. A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil. 15(1):134-154. DOI: https://doi.org/10.1007/BF01347224
Tripathi, A. and Mishra, S. 2020. An estimation of price effects of making food fortification mandatory in India. Food and Nutrition Bulletin. 41(3):355-366.
Valencia, R. T.; Acosta, L. S.; Hernández, M. F.; Rangel, P. P.; Robles, M. Á. G., Cruz, R. C. A. and Vázquez, C. V. 2018. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber fruit. Agronomy. 8(11):1-13.
Wang, J.; Ren, T.; Wang, F.; Han, Y.; Liao, M.; Jiang, Z. and Liu, H. 2016. Effects of dietary cadmium on growth, antioxidants and bioaccumulation of sea cucumber (Apostichopus japonicus) and influence of dietary vitamin C supplementation. Ecotoxicol. Environ. Safety. 129(1):145-153. DOI: https://doi.org/10.1016/j.ecoenv.2016.01.029
Wang, X. P.; Li, Q. Q.; Pei, Z. M. and Wang, S. C. 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum. 62(4):801-808.
Wang, Y.; Wang, S.; Xu, M.; Xiao, L.; Dai, Z. and Li, J. 2019. The impacts of g -Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ. Pollution. 249(1):1011-1018.
Xiong, T.; Dumat, C.; Dappe, V.; Vezin, H.; Schreck, E.; Shahid, M. and Sobanska, S. 2017. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ. Sci. Technol. 51(9):5242-5251. DOI: https://doi.org/10.1021/acs.est.6b05546
Yuan, J.; Chen, Y.; Li, H.; Lu, J.; Zhao, H.; Liu, M. and Glushchenko, N. N. 2018. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Scientific Reports. 8(1):1-9. DOI: https://doi.org/10.1038/s41598-017-18055-w
Yusefi, T. E.; Fallah, S.; Rostamnejadi, A. and Pokhrel, L. R. 2020. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environment. 738(1):140240-140259.
Zhou, Z. D. and Tan, E. K. 2017. Iron regulatory protein (IRP) iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Molecular Neurodegeneration. 12(1):1-12. DOI: https://doi.org/10.1186/s13024-017-0218-4
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.