Effectiveness of the application of biostimulants in snap bean under water stress

Authors

  • Karla Ivonne Hernández-Figueroa Delicias Unit-Center for Research in Food and Development. Av. Fourth south 3820, Fracc. Winners of the Desert, Cd. Delicias, Chihuahua, Mexico. ZC. 33089
  • Esteban Sánchez-Chávez Delicias Unit-Center for Research in Food and Development. Av. Fourth south 3820, Fracc. Winners of the Desert, Cd. Delicias, Chihuahua, Mexico. ZC. 33089
  • Damaris Leopoldina Ojeda-Barrios Autonomous University of Chihuahua-Faculty of Agrotechnological Sciences-University Campus I. Chihuahua, Mexico. ZC. 31350
  • Celia Chávez-Mendoza Delicias Unit-Center for Research in Food and Development. Av. Fourth south 3820, Fracc. Winners of the Desert, Cd. Delicias, Chihuahua, Mexico. ZC. 33089
  • Ezequiel Muñoz-Márquez Delicias Unit-Center for Research in Food and Development. Av. Fourth south 3820, Fracc. Winners of the Desert, Cd. Delicias, Chihuahua, Mexico. ZC. 33089

DOI:

https://doi.org/10.29312/remexca.v13i28.3270

Keywords:

Phaseolus vulgaris L., abiotic stress, drought, productivity

Abstract

Water stress is one of the main factors that affect both the growth and productivity of agricultural crops. An innovative alternative to improve resistance to this water stress is the application of biostimulants. The objective of this work was to evaluate the effectiveness of biostimulants on the growth, yield, content, and water use efficiency (WUE) at different levels of water stress in the ‘Strike’ snap bean plant. The experiment was carried out under greenhouse conditions in Delicias, Chihuahua during the August-September period of 2021. A completely randomized experimental design was used and the treatments consisted of three types of irrigation: at 100% of field capacity (CC, for capacidad de campo), without water stress and at 75 and 50% of CC, in these treatments with water deficit, the biostimulants: nanoparticles of zinc oxide plus chitosan, Codasil®, Osmoplant®, Stimplex® and salicylic acid, were applied foliarly. The results obtained indicate that the best treatment applied was CC75 + nano Zn + chitosan since it favored the greater accumulation of biomass, fruit production, water content and the efficiency of water use in snap bean plants cv. Strike, which allowed it a better adaptation and tolerance to water stress compared to the treatments CC50 + Stimplex® and CC75 + Stimplex®, that probably the negative effects of water stress were greater than the benefits of the Stimplex® biostimulant applied. Finally, it is concluded that the nanoparticles of zinc oxide plus chitosan was the most efficient biostimulant to relieve and tolerate the effects of water stress, so it is considered an innovative alternative to maintain and improve the growth and production of the crop against water stress problems.

Downloads

Download data is not yet available.

References

Arciniegas, B. S. R. 2017. Efecto de la aplicación de Ascophyllum nodosum con ácidos húmicos y fúlvicos, sobre el rendimiento del cultivo de arroz (Oryza sativa L.), bajo riego, en la zona de Babahoyo. Universidad Técnica de Babahoyo. Facultad de Ciencias Agropecuarias. 30-31 pp.

Barrios, M. B.; Buján, A.; Debelis, S. P.; Sokolowski, A. C.; Blasón, Á. D.; Rodríguez, H. A.: López, S. C.; De Grazia, J.: Mazo, C. R. y Gagey, M. C. (2014). Relación de raíz/biomasa total de Soja (Glycine max) en dos sistemas de labranza. Terra Latinoam. 32(3):221-230.

Bechtold, U. and Field, B. 2018. Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 69(11):2753-2758. DOI: https://doi.org/10.1093/jxb/ery157

Burman, U.; Saini, M. and Kumar, P. 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 95(4):605-612. DOI: https://doi.org/10.1080/02772248.2013.803796

Colla, G. and Rouphael, Y. 2015. Biostimulants in horticulture. Sci. Hortic. 196(30):1-134. DOI: https://doi.org/10.1016/j.scienta.2015.10.044

Dalal, A.; Bourstein, R.; Haish, N.; Shenhar, I.; Wallach, R. and Moshelion, M. 2019. Dynamic physiological phenotyping of drought-stressed pepper plants treated with ‘productivity-enhancing’ and ‘survivability-enhancing’ biostimulants. Front. Plant Sci. 905(10):2-3.

Farouk, S.; Mosa, A. A.; Taha, A. A.; Ibrahim, H. M. and Gahmery, A. M. 2011. Protective effect of humic acid and chitosan on radish (Raphanus sativus L. var. Sativus) plants subjected to cadmium stress. J. Stress physiol. Biochem. 7(2):99-116.

Farouk, S. and Amany, A. R. 2012. Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egypt. Acad. J. Biol. Sci. 14:14-26. DOI: https://doi.org/10.4314/ejb.v14i1.2

Ghoname, A. A.; Nemr, M. A.; Abdel, M. A. M. R. and Tohamy, W. A. 2010. Enhancement of sweet pepper crop growth and production by application of biological, organic, and nutritional solutions. Res. J. Agric. Biol. Sci. 6(3):349-355.

Hassnain, M.; Alam, I.; Ahmad, A.; Basit, I.; Ullah, N.; Alam, I. and Shair, M. M. 2020. Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pak. J. Agric. Res. 33(1):27-41.

Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196(30):3-14. DOI: https://doi.org/10.1016/j.scienta.2015.09.021

Kochhar, S. L. and Gujral, S. K. 2020. Plant physiology -theory and applications. 2nd (Ed.). Cambridge University Press. Cambridge, United Kingdom. 702 p.

Larqué, S. A. 1978. The antitranspirant effect of acetylsalicyc acid on Phaseolus vulgaris. Physiol. Plant. 43(2):126-128. DOI: https://doi.org/10.1111/j.1399-3054.1978.tb01579.x

Ma, Y.; Zhang, P.; Zhang, Z.; He, X.; Li, Y.; Zhang, J. and Zhao, Y. 2015. Origin of the different phytotoxicity and biotransformation of cerium and lanthanumoxide nanoparticles in cucumber. Nanotoxicology. 9(2):262-270. DOI: https://doi.org/10.3109/17435390.2014.921344

Medrano, H.; Bota, J.; Cifre, J.; Flexas, J.; Ribas, C. M. and Gulías, J. 2007. Eficiencia en el uso del agua por las plantas. Investigaciones Geográficas. (43):63-84. DOI: https://doi.org/10.14198/INGEO2007.43.04

Najafian, S.; Khoshkhui, M.; Tavallali, V. and Saharkhiz, M. J. 2009. Effect of salicylic acid and salinity in thyme (Thymus vulgaris L.): Investigation on changes in gas exchange, water relations, and membrane stabilization and biomass accumulation. Australian J. Basic Appl. Sci. 3(3):2620-2626. Onaga, G. and Wydra, K. 2016. Advances in plant tolerance to abiotic stresses. Plant Genomics. 10(9):229-272.

Palacio, M. A.; Ramírez, E. C. A.; Gutiérrez, R. N. J.; Sánchez, C. E..; Ojeda, B. D. L.; Chávez, M. C. and Sida, A. J. P. 2021. Efficiency of foliar application of zinc oxide nanoparticles versus zinc nitrate complexed with chitosan on nitrogen assimilation, photosynthetic activity, and production of green beans (Phaseolus vulgaris L.). Sci. Hortic. 288(10):110297. Rosário, R. V.; Santos, A. L.; Silva, A. A.; Sab, M. P. V.; Germino, G. H.; Cardoso, F. B. and Almeida, S. M. 2021. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. Plant physiol. Biochem. 158(11):228-243. Razzaq, A.; Ammara, R.; Jhanzab, H. M.; Mahmood, T.; Hafeez, A. and Hussain, S. 2016. A novel nanomaterial to enhance growth and yield of wheat. J. Nanosci. Technol. 2(1):55-58. Sánchez, B. J. J. 2019. Efecto del Ascophyllum nodosum combinado con ácidos húmicos y fúlvicos, sobre el rendimiento del cultivo de maíz (Zea mays L.). Universidad Técnica de Babahoyo, Facultad de Ciencia Agropecuarias. 29-32 pp.

Sánchez-Chávez, E.; Barrera-Tovar, R.; Muñoz-Márquez, E.; Ojeda-Barrios, D. L. y Anchondo-Nájera, Á. 2011. Efecto del ácido salicílico sobre biomasa, actividad fotosintética, contenido nutricional y productividad del chile jalapeño. Rev. Chapingo. Ser. Hortic. 17(SPE1):63-68. DOI: https://doi.org/10.5154/r.rchsh.2011.17.039

Sánchez, C. E.; Ruiz, J. M. and Romero, M. L. 2016. Compuestos nitrogenados indicadores de estrés en respuesta a las dosis tóxicas y deficientes de nitrógeno en frijol ejotero. Nova Sci. 8(16):228-244. Sánchez, C. E.; Barrera, T. R.; Muñoz, M. E.; Ojeda, B. D. L. y Anchondo, N. Á. 2011. Efecto del ácido salicílico sobre biomasa, actividad fotosintética, contenido nutricional y productividad del chile jalapeño. Rev. Chapingo. Ser. Hortic. 17(1):63-68. DOI: https://doi.org/10.21640/ns.v8i16.439

Sytar, O.; Kumari, P.; Yadav, S.; Brestic, M. and Rastogi, A. 2019. Phytohormone priming regulator for heavy metal stress in plants. J. Plant Growth Regul. 38(2):739-752.

Szulc, W.; Rutkowska, B.; Hoch, M.; Ptasinski, D. and Kazberuk, W. 2019. Plant available silicon in differentiated fertilizing conditions. Plant, Soil Environ. 65(5):233-237.

Trejo, J. A. M.; Monsivais, A. O. G.; Ramírez, J. O.; González, A. Z.; Cerda, E. R.; Hernández, M. F. y Nuncio, R. A. 2006. Efecto de tres profundidades de cinta de riego por goteo en la eficiencia de uso de agua y en el rendimiento de maíz forrajero. Rev. Mex. Cienc. Pec. 44(3):359-364.

Vega, I.; Nikolic, M.; Pontigo, S.; Godoy, K.; Mora, M. D. L. L. and Cartes, P. 2019. Silicon improves the production of high antioxidant or structural phenolic compounds in barley cultivars under aluminum stress. Agronomy. 9(7):388-403.

Published

2022-09-22

How to Cite

Hernández-Figueroa, Karla Ivonne, Esteban Sánchez-Chávez, Damaris Leopoldina Ojeda-Barrios, Celia Chávez-Mendoza, and Ezequiel Muñoz-Márquez. 2022. “Effectiveness of the Application of Biostimulants in Snap Bean under Water Stress”. Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:149-60. https://doi.org/10.29312/remexca.v13i28.3270.

Issue

Section

Articles

Most read articles by the same author(s)