Use of artifices in Opstat to analyze series of experiments in a partial diallel

Authors

  • Delfina de Jesús Pérez-López Center for Research and Advanced Studies in Plant Breeding-Faculty of Agricultural Sciences. AP. 435. Tel. 722 2965518, ext. 148
  • Gerardo Jasso-Bobadilla Center for Research and Advanced Studies in Plant Breeding-Faculty of Agricultural Sciences. AP. 435. Tel. 722 2965518, ext. 148
  • Claudia Saavedra-Guevara Doctoral Program in Agricultural Sciences and Natural Resources-Institute of Agricultural and Rural Sciences. University Campus ‘El Cerrillo’-Autonomous University of the State of Mexico, Toluca, State of Mexico. Tel. 722 2965552, ext. 117
  • J. Ramón Pascual Franco-Martínez Doctoral Program in Agricultural Sciences and Natural Resources-Institute of Agricultural and Rural Sciences. University Campus ‘El Cerrillo’-Autonomous University of the State of Mexico, Toluca, State of Mexico. Tel. 722 2965552, ext. 117
  • José Francisco Ramírez-Dávila Center for Research and Advanced Studies in Plant Breeding-Faculty of Agricultural Sciences. AP. 435. Tel. 722 2965518, ext. 148
  • Andrés González-Huerta Center for Research and Advanced Studies in Plant Breeding-Faculty of Agricultural Sciences. AP. 435. Tel. 722 2965518, ext. 148

DOI:

https://doi.org/10.29312/remexca.v13i2.3130

Keywords:

circulating matrices, free software, randomized complete block design, symmetrical incomplete diallel

Abstract

The use of specialized software saves time and resources when designing, randomizing and analyzing diallel cross experiments in a plant breeding program. In this study, the components of an analysis of variance (Anova) are calculated for a series of experiments in a randomized complete block design applied to the grain yield of a partial diallel cross generated with eight lines of corn (Zea mays L.), each sampled five times (p= 8; s= 5), evaluated in three environments and in four repetitions per environment (n= 240 data). The main objective was to validate these results with the Opstat statistical package, which produces the Anova outputs for each trial and some indirect calculations to complete this in the series of experiments. The most critical part of the statistical genetic analysis was to propose an artifice to decompose the effects of GCA and SCA in the crosses and those corresponding to GCA x A and SCA x A in the interaction crosses x environments. In these calculations, the inverse of the matrix A is common in all operations performed with matrix algebra. In the above context, it was observed that Opstat is very friendly and reliable to generate the Anovas and gi estimators for the evaluated parents, but it incorrectly calculates narrow-sense heritability when some negative variance is estimated.

Downloads

Download data is not yet available.

References

Cruz, C. D. 2013. Genes- a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarium. 35(3):271-276.

Dhillon, B. S. 1978. Partial diallel cross in multi-environments. Biom. J. 20(3):279-283.

Federer, W. T. 1967. Diallel cross designs and their relations to fractional replication. Der Züchter. 37(2):174-178.

Fyfe, J. L. and Gilbert, N. 1963. Partial diallel cross. Biometrics. 19(3):278-286.

Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9(4):463-493.

Gomez, K. A. and Gomez, A. A. 1984. Statistical procedures for agricultural research. 2nd (Ed.). John Wiley and Sons, Inc. Singapore. 690 p.

González, H. A.; Sahagún, C. J. y Pérez, L. D. J. 2007. Estudio de ocho líneas de maíz en un experimento dialélico incompleto. Rev. Cien. Agríc. Info. 16(1):3-9.

González, H. A.; Pérez, L. D. J.; Rubí, A., M., Gutiérrez, R. F.; Franco, M. J. R. P. y Padilla, L. A. 2019. InfoStat, InfoGen, y SAS para contrastes mutuamente ortogonales en experimentos en bloques completos al azar en parcelas subdivididas. Rev. Mex. Cienc. Agríc. 10(6):1417-1431.

Jasso, B. G.; González, H. A.; Pérez, L. D. J.; Franco, M. J. R. P.; Rubí, A. M. y Mejía, C. J. 2022. Uso de Opstat para validar resultados en un dialélico parcial con ocho líneas de maíz evaluadas en un ambiente. Rev. Mex. Cienc. Agríc. 13(1):41-52.

Kempthorne, O. and Curnow, R. N. 1961. The partial diallel cross. Biometrics 17(2):229-250.

Martínez, G. A. 1991. Análisis de los experimentos dialélicos a través del procedimiento IML de SAS. Colegio de Postgraduados, Chapingo, Estado de México. Comunicaciones en estadística y cómputo. Centro de Estadística y Cálculo. 10(2):1-36.

Martínez, G. A. 1983. Diseños y análisis de experimentos de cruzas dialélicas. Centro de estadística y cálculo. Colegio de Postgraduados en Ciencias Agrícolas. 2a (Ed.). Chapingo, Estado de México. 252 p.

Mastache, L. A. A.; Martínez, G. A.; Castillo, M. A. y González, C. F. V. 1998. Los mejores predictores lineales e insesgados (MPLI) en experimentos dialélicos parciales sin efectos maternos. Rev. Fitotec. Mex. 21(1):49-60.

Narain, P.; Rao, C. S. and Nigam, A. K. 1974. Partial diallel cross based on extended triangular association scheme. Indian J. Genet. 34(3):309-317.

Padilla, L. A.; González, H. A.; Pérez, L. D. J.; Rubí, A. M.; Gutiérrez, R. F.; Ramírez, D. J. F.; Franco, M.; J. R. P. y Serrato, C. R. 2019. Programas para SAS e InfoStat para analizar una serie de experimentos en parcelas subdivididas. In: temas selectos en la innovación de las ciencias agropecuarias. Alfaomega Grupo Editorial SA de CV. Primera Edición. DF, México. 724 p. ISBN: 9786075384115.

Pérez, L. D. J.; Franco, M. J. R. P.; Gutiérrez, R. F.; Hernández, A. J.; Balbuena, M. A.; González, H. A. 2021. Diseño de experimentos factoriales 2n para su análisis con InfoStat e InfoGen. Rev. Mex. Cien. Agríc. 12(6):1087-1099.

Saavedra, G. C.; Pérez, L. D. J.; González, H. A.; Franco, M. J. R. P.; Rubí, A. M. y Ramírez, D. J. F. 2021. Métodos de Griffing: revisión sobre su importancia y aplicación en fitomejoramiento convencional. Rev. Mex. Cien. Agríc. 12(7): 1275-1286.

Sahagún, C. J. 1998. Construcción y análisis de los modelos fijos, aleatorios y mixtos. Departamento de Fitotecnia. Programa Nacional de Investigación en Olericultura. Universidad Autónoma Chapingo (UACH). Boletín Técnico núm. 3. 64 p.

Singh, R. K. and Chaudhary, B. D. 1985. Biometrical methods in quantitative genetic analysis. Revised (Ed.). Kalyani Publishers. New Delhi-Ludhiana, printed in India. 318 p.

Sheoran, O. P.; Tonk, D. S.; Kaushik, L. S.; Hasija, R. C. and Pannu, R. S. 1998. Statistical software package for agricultural research workers. Recent advances in information theory, statistics and computer application by Hooda, D. S. and Hasija, R. C. Department of Mathematics Statistics. CCS HAU. Hisar:139-143. https://14.139.232.166/opstat.

Torres, F. J. L.; Mendoza, G. B.; Prassana, B. M.; Alvarado, G.; San Vicente, E. M. and Crossa, J. 2017. Grain yield and stability of white early maize hibryds in the Highland Valleys of Mexico. Crop Sci. 57(6):3002-3015.

Published

2022-03-23

How to Cite

Pérez-López, Delfina de Jesús, Gerardo Jasso-Bobadilla, Claudia Saavedra-Guevara, J. Ramón Pascual Franco-Martínez, José Francisco Ramírez-Dávila, and Andrés González-Huerta. 2022. “Use of Artifices in Opstat to Analyze Series of Experiments in a Partial Diallel”. Revista Mexicana De Ciencias Agrícolas 13 (2). México, ME:273-87. https://doi.org/10.29312/remexca.v13i2.3130.

Issue

Section

Articles

Most read articles by the same author(s)