Griffing’s methods: review of their importance and application in conventional plant breeding

Authors

  • Claudia Saavedra Guevara Programa de Doctorado en Ciencias Agropecuarias y Recursos Naturales-Universidad Autónoma del Estado de México-Instituto de Ciencias Agropecuarias y Rurales-Campus Universitario ‘El Cerrillo’. Toluca, Estado de México, México. Tel. 722 2965552, ext. 117
  • Delfina de Jesús Pérez López Centro de Investigación y Estudios Avanzados en Fitomejoramiento-Facultad de Ciencias Agrícolas. Toluca, Estado de México, México. AP. 435. Tel. 722 2965518, ext. 148.
  • Andrés González Huerta Centro de Investigación y Estudios Avanzados en Fitomejoramiento-Facultad de Ciencias Agrícolas. Toluca, Estado de México, México. AP. 435. Tel. 722 2965518, ext. 148
  • J. Ramón Pascual Franco Martínez Centro de Investigación y Estudios Avanzados en Fitomejoramiento-Facultad de Ciencias Agrícolas. Toluca, Estado de México, México. AP. 435. Tel. 722 2965518, ext. 148
  • Martin Rubí Arriaga Centro de Investigación y Estudios Avanzados en Fitomejoramiento-Facultad de Ciencias Agrícolas. Toluca, Estado de México, México. AP. 435. Tel. 722 2965518, ext. 148
  • José Francisco Ramírez Dávila Centro de Investigación y Estudios Avanzados en Fitomejoramiento-Facultad de Ciencias Agrícolas. Toluca, Estado de México, México. AP. 435. Tel. 722 2965518, ext. 148

DOI:

https://doi.org/10.29312/remexca.v12i7.3040

Keywords:

diallel crosses, genetic parameters, genetic-statistical models and packages

Abstract

The estimation of genetic parameters in plants and animals is of great relevance in the agro-livestock and biological sciences. In this context, the effects and variances of combining ability, heritability, heterosis, response to selection, identification of parents and outstanding simple crosses, as well as the prediction of hybrids of higher production and quality, depend on the type of mating and experimental design selected. This study analyzes Griffing’s four methodologies in relation to those of Hayman and Jinks and Gardner and Eberhart; the assumptions considered in these are underlined and the similarities that exist between them are commented. It includes the eight mathematical models that Griffing discussed and that are frequently used to apply some statistical package, cites some studies carried out in the last decade, and suggests some software for its genetic-statistical analysis.

Downloads

Download data is not yet available.

References

Aditika-Kanwar, H. S.; Priyanka-Shalini, S. and Saurabh, S. 2020. Heterotic potential, potence ratio, combining ability and genetic control of quality and tield traits in bell pepper under net-house conditions of NW himalayas. Agric. Res. 9(4):526-535.

Amissah, S.; Osekre, E. A.; Nyadanu, D.; Akromah, R.; Afun, J. V. K.; Amoah, R. A.; Owusu, G. A. and Adejumobi, I. I. 2019. Inheritance and combining ability studies on grain yield and resistance to maize weevil (Sitophilus zeamais, mostchulsky) among extra early quality protein maize inbred lines. Ecol. Genet. Gen. 12(1):100043.

Anyanga, W. O.; Rubalhayo, P.; Gibson, P. and Okori, P. 2016. Combining ability and gene action in sesame (Sesamum indicum L.) elite genotypes by diallel mating design. J. Plant Breed. Crop Sci. 8(11):250-256.

Awata, L. A. O.; Tongoona, P.; Danquah, E.; Efie, B. E. and Marchelo-Dragga, P. W. 2018. Common mating designs in agricultural research and their reliability in estimation of genetic parameters. IOSR. J. Agric. Vet. Sci. 11(7):16-36.

Baker, R. J. 1978. Issues in diallel analysis. Crop Sci. 18(4):533-536.

Barreta, D.; Nardino, M.; Konflanz, V. A.; De-Pelegrin, A. J.; Szareski, V. J.; Carvelho, I. R; De-Souza, V. Q.; De-Oliveira, A. C. and Da-Maia, L. C. 2019. Diallelic analysis of endogamic maize lines with emphasis on agronomic trais of tassel in different environments. J. CropSci. Biotech. 22(2):101-111.

Borojevic, S. 1990. Principles and methods of plant breeding. Developments in crop science 17. Elservier science publishing company inc. Amsterdam, The Netherlands. 368 p.

Barroso, C. J. T.; Dos-Santos, P. R.; Daher, R.; Francesconi, S. W.; Kesia, V. A.; Rodrigues, N. M. Da-Silva, C. D.; Vivas, M.; Teixeira, D. A. J. A. and Menezes, D. 2019. Estimation of genetic merit of diallel hybrids of seet pepper by mixed models. Ciencia Rural, Santa Maria. 48(08):1-7).

Christie, B. R. and Shattuck, V. I. 1992. The diallel cross: design, analysis and use for plant breeders. Plant Breed. Rewiews. 9(1):9-36.

Cockerham, C. C. 1963. Estimation of genetic variances. In: Hanson, W. D. and Robinson, H. F. (Ed.). Statistical genetics and plant breeding. NRC Publ. 982. Natl. Acad. Sci. Natl. Res. Council. Washington, DC. 53-93 pp.

Cruz, C. D. 2013. Genes-a software package for analysis in experimental statistics and quantitative genetics. Acta scientiarum. Agronomy. 35(3):271-276.

Dudley, J. W. and Moll, R. H. 1969. Interpretation and use of estimates of heritability and genetic variance in plant breeding. Crop Sci. 9(3):257-262.

Eberhart, S. A. and Gardner, C. O. 1966. A general model for genetic effects. Biometrics. 22(4):864-881.

Fasahat, P.; Rajabi, A.; Rad, J. M. and Derera, J. 2016. Principles and utilization of combining ability in plant breeding. Biom. Bio. Inter. J. 4(1):1-22.

Gardner, C. O. and Eberhart, S. A. 1966. Analysis and interpretation of the variety cross diallel and related populations. Biometrics. 22(3):439-452.

Griffing, B. 1956a. A generalized treatment of diallel cross in quantitative inheritance. Heredity. 10(1):31-50.

Griffing, B. 1956b. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9(4):463-493.

Gomez, K. A. and Gomez, A. A. 1984. Statistical procedures for agricultural research. 2nd (Ed.). John Wiley and Sons, Inc. Singapore. 690 p.

González, H. A.; Sahagún, C. J. y Pérez, L. D. J. 2007a. Estudio de ocho líneas de maíz en un experimento dialélico incompleto. Rev. Cienc. Agríc. Inf. 16(1):3-9.

González, H. A.; Pérez, L. D. J.; Sahagún, C. J.; Norman, M. T.; Balbuena, M. A. y Gutiérrez, R. F. 2007b. Análisis de una cruza dialélica completa de líneas endogámicas de maíz. Rev. Cienc. Agríc. Inf. 16(1):10-17.

González, H. A.; Pérez, L. D. J.; Rubí, A. M.; Gutiérrez, R. F.; Franco, M. J. R. P. y Padilla, L. A. 2019. InfoStat, InfoGen y SAS para contrastes mutuamente ortogonales en experimentos en bloques completos al azar en parcelas subdivididas. Rev. Mexic. Cienc. Agríc. 10(6):1417-1431.

Hallauer, A. R.; Carena, M. J. and Filho, J. B. M. 2010. Quantitative genetics in maize breeding. 6th (Ed.). Springer, Iowa, USA. 663 p.

Harriman, J. C. and Nwammadu, C. A. 2016. Utilization of diallel analyses for heritability, GCA and SCA studies in crop improvement. Am. Adv. J. Biol. Sci. 2(5):159-167.

Hayman, B. I. 1954 a. The analysis of variance of diallel tables. Biometrics. 10(2):235-244.

Hayman, B. I. 1954 b. The theory and analysis of diallel crosses. Genetics. 39(6):789-809.

Hayward, M., D. 1979. The application of the diallel cross to outbreeding crop species. Euphytica. 28(3):729-737.

IRRI. 2014. International rice research institute. Plant breeding tools (pbtools). User’s manual, version 1.4. Biometrics and breeding informatics. Plant Breed. Gen. Biotechnol. Division. Irri. 198 p.

Jinks, J. L. and Hayman, B. I. 1953. The analysis of diallel cross. Maize genetics cooperation newsletter. 27(1):48-54.

Jinks, J. L. 1954. The analysis of continuous variation in a diallel cross in nicotiana rustic varieties. Genetics. 39(1):767-788.

Kearsey, M. J. 1965. Biometrical analysis of a random mating population: a comparison of five experimental designs. Heredity. 20(2):205-235.

Kemthorne, O. and Curnow, R. N. 1961. The partial diallel cross. Biometrics. 17(2):229-250.

Lima, D. N. T.; De-França, S. F.; Souza, D. R. C. and Ferreira, D. S. E. 2019. Watermelon general and specific combining ability. Communicate Scientiae. 10(1):132-140.

Makumbi, D.; Alvarado, G.; Crossa, J. and Burgueño, J. 2018. Sashaydiall: a sas program for hayman’s diallel analisis. Crop Sci. 58(4):1605-1615.

Martínez, G. A. 1988. Diseños Experimentales: métodos y elementos de teoría. (Ed.). Trillas, México, DF. 756 p.

Mastache, L. A. A.; Martínez, G. A. y Castillo, M. A. 1999a. Los mejores predictores lineales e insesgados (MPLI) en los diseños dos y cuatro de griffing. Agrociencia. 33(1):81-91.

Mastache, L. A. A.; Martínez, G. A. and Castillo, M. A. 1999b. Los mejores predictores lineales e insesgados (MPLI) en los diseños uno y tres de griffing. Agrociencia. 33(3):349-359.

Mastache, L. A. A. and Martínez, G. A. 2003. Un algoritmo para el análisis, estimación y predicción en experimentos dialélicos balanceados. Rev. Fitot. Mex. 26(3):191-200.

Mbusa, H. K.; Ngugi, K.; Olubayo, F. M.; Musembi, K. B.; Muthomi, J. W. and Nzuve, F. M. 2017. The Inheritance of yield components and beta carotene content in sweet potato. J. Agric. Sci. 10(2):71-81.

Moore, K. J. and Dixon, P. M. 2014. Analysis of combined experiments revisited. Agron. J. 107(2):763-771.

Muhinyuza, J. B.; Shimelis, H.; Melis, R.; Sibiya, J. and Nzaramba, M. N. 2016. Combining ability analysis of yield and late blight [Phytophthora infestans (Mont.) de Bary] resistance of potato germplasm in rwanda. Austr. J. Crop Sci. 10(6):799-807.

Muhumuza, E.; Edema, R.; Namugga, P. and Barekye, A. 2020. Combining ability analysis of dry matter content, reducing sugars and yield of potato (Solanum tuberosum L.) genotypes in uganda. J. Sci. Agric. 4(1):01-08.

Mulato, B. J.; Peña, L. A.; Sahagún, C. J.; Villanueva, V. C. and López, R. J. J. 2020. Self-compatibility inheritance in tomatillo (Physalis ixocarpa Brot.). Vegetable Crops Res. Bulletin. 67(1):17-24.

Mumtaz, A.; Zafar, F. and Shehzad, S. A. 2015. A review on mating designs. Nat. Sci. 13(2):98-105.

Nduwumuremyi, A.; Tongoona, P. and Habimana, S. 2013. Mating designs: helpful tool for quantitative plant breeding analysis. J. Plant Breed. Genet. 01(03):117-129.

Ngalio, S.; Shimelis, H.; Sibiya, J.; Mtunda, K. and Mashilo, J. 2019. Combining ability and heterosis of selected sweetpotato (Ipomoea batatas L.) clones for storage root yield, yield related traits and resistance to sweetpotato virus disease. Euphytica. 215(87):1-19.

Oliveira, G. H. F.; Buzinaro, R.; Revolti, L. T. M.; Giorgenon, C. H. B.; Charnai, K; Resende, D. and Moro, G. V. 2016. An accurate prediction of maize crosses using diallel analysis and best linear unbiased predictor (BLUP). Chil. J. Agric. Res. 76(3):294-299.

Peña, L. A. y Márquez, S. F. 1990. Mejoramiento genético de tomate de cascara (Physalis ixocarpa Brot.). Rev. Chapingo. 15(71-72): 84-88.

Peña, L. A.; Molina, G. J. D.; Ortíz, C. J.; Cervantes, S. T.; Márquez, S. F. y Sahagún, C. J. 1999. Heterosis intervarietal en tomate de cascara (Physalis ixocarpa Brot.). Rev. Fitotec. Mex. 22(2):199-213.

Pérez, L. D. J.; Saavedra, G. C.; Rubí, A. M.; Franco, M. J. R. P.; Gutiérrez, R. F. y González, H. A. 2020. Código de SAS para analizar un dialélico completo y heterosis. UN ambiente. Rev. Mex. Cienc. Agríc. 11(4):829-840.

Rivera-Colín, A.; Mejía-Carranza, J.; Vázquez-García, L. M.; Urbina-Sánchez, E. y Ramírez-Gerardo, M. G. 2019. Aptitud combinatoria y heterosis en variedades de gerbera (Gerbera x hybrida). Rev. Fitotec. Mex. 42(2):155-162.

Rodríguez, F.; Alvarado, G.; Pacheco, A.; Burgueño, J. and Crossa, J. 2018. AGD-R Software (analysis of genetic design in R), versión 5.0, CIMMYT. Unidad de biometría y estadística. El Batán, estado de México, México.

Rodríguez-Pérez, G.; Zavala-García, F.; Treviño-Ramírez, J. E.; Ojeda-Zacarías, C.; Mendoza-Elos, M.; Rodríguez-Herrera, S. A. y Cervantes-Ortiz, F. 2016. Aptitud combinatoria y heterosis entre líneas de dos tipos de maíz para grano. Interciencia. 41(1):48-54.

Sahagún, C. J. 1990. Utilidad del análisis de varianza en el estudio de la interacción entre genotipos y ambientes. Rev. Xilonen de la Facultad de Ciencias Agrícolas (UAEMéx). 1(1):21-32.

Sahagún, C. J. 1998. Construcción y análisis de los modelos fijos, aleatorios y mixtos. Universidad Autónoma Chapingo (UACH)-Departamento de Fitotecnia. Programa nacional de investigación en olericultura. Boletín técnico núm. 2. 64 p.

Santiaguillo, H. J. F.; Cervantes, S. T. y Peña, L. A. 2004. Selección para rendimiento y calidad de fruto de cruzas planta a planta entre variedades de tomate de cascara. Rev. Fitot. Mexic. 27(1):85-91.

Sestraş A. F.; Jäntschi, L. and Bolboacă, S. D. 2018. Using the Griffing’s experimental design method I, model II. Apple breeding - a case study as a proposed methodology of the statistical and genetic analysis. Genetika. 50(1):107-120.

Singh, D. 1973. Diallel analysis for combining ability over several environments- i. Indian J. Gen. Plant Breed. 33(3):469-481.

Singh, D. 1973. Diallel cross analysis for combining ability over several environments- ii. Indian J. Gen. Plant Breed. 33(3):469-481.

Shattuck, V. I.; Christie, B. and Corso, C. 1993. Principles of griffing’s combining ability analysis. Genetica. 90(1):73-79.

Sprague, G. F. and Tatum, L. A. 1942. General versus specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34(10):923-832.

Soriano, V. J. M. 2000. The parametric restrictions of thegriffing diallel analysis model: combining ability analysis. Gen. Mol. Biol. 23(4):877-881.

Vasconcelos, W. S.; Dos-Santos, R. C.; Vasconcelos, U. A. A.; Cavalcanti, J. J. V. and Farias, F. J. C. 2020. Estimates of genetic parameters in diallelic populations of cotton subjected to water stress. Rev. Brasileira de Engenharia Agrícola e Ambiental. 24(8):541-546.

Vesali, M. R.; Baradaran, R.; Hassanpanah, D. and Seghatolelami, M. J. 2020. Generating genetic diversity through diallel crosses of promising potato cultivars (Solanum tuberosum L.) and studying cultivar hybrids under water deficit stress. Rev. Agricultura Neotropical, Cassilândia-MS. 7(2):49-56.

Wright, A. J. 1985. Diallel design, analyses and reference populations. Heredity. 54(3):307-311.

Yaw, O. E.; Mohammed, H.; Manigben, K. A.; Adjebeng-Danquah, J.; Kusi, F.; Karikari, B. anf Kofi, S. E. 2020. Diallel analysis and heritability of grain yield, yield components, and maturity traits in cowpea (Vigna inguiculata (L) Walp). The Sci. World J. ID 9390287. 9 p.

Zhang, Y. and Kang, M. S. 1977. DIALLEL-SAS: A SAS Program for griffing’s diallel analyses. Agron. J. 89(2):176-182.

Zhang, Y.; Kang, M. S. and Lamkey, K. R. 2005. DIALLEL-SAS05: A Comprehensive program for griffing’s and gardner-eberhart analyses. Agron. J. 97(4):1097-1106.

Published

2021-11-04

How to Cite

Saavedra Guevara, Claudia, Delfina de Jesús Pérez López, Andrés González Huerta, J. Ramón Pascual Franco Martínez, Martin Rubí Arriaga, and José Francisco Ramírez Dávila. 2021. “Griffing’s Methods: Review of Their Importance and Application in Conventional Plant Breeding”. Revista Mexicana De Ciencias Agrícolas 12 (7). México, ME:1275-86. https://doi.org/10.29312/remexca.v12i7.3040.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>