Modeling of nominal vs real price predictors applied to corn, wheat and barley in Mexico

Authors

  • Miguel Ángel Martínez-Damián Posgrado en Economía-Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Estado de México, México. CP. 56230.
  • José de Jesús Brambila-Paz Posgrado en Economía-Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Estado de México, México. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v14i2.2933

Keywords:

arima model, goodness of fit, unit root

Abstract

In agricultural production, the lag in time between the time resources are allocated and resources are obtained makes it necessary to generate a prediction at time t (sowing), of the current price in t + j (sale). However, in the presence of inflation, the decision maker may choose to make a prediction in nominal terms or discount such inflation. With monthly prices, under a time series approach and after fitting an IMA (1, 1) model, this dilemma was studied for the case of corn, wheat and barley in Mexico. After comparing six goodness-of-fit criteria for each prediction alternative in each crop for the analyzed period 2002 to 2019, it is found that the use of nominal or real data is indifferent in the construction of the price predictor.

Downloads

Download data is not yet available.

References

Brozl, D. R. y Viego, V. N. 2014. Predicción de precios de productos de pinus spp. con modelos arima. Madera y Bosques. 20(1):37-46.

Ceballos, P. S. G. y Pire, R. 2015. Estimación del precio internacional del arroz (Oryza sativa L.) bajo el modelo arima. Rev. Mexic. Cienc. Agríc. 11(esp):2083-2089.

Department of Treasury (DT). 2008. Forecasting accuracy of the act budget estimates. http://www.treasury.act.gov.au/documents/Forecasting%20Accuracy%20%20ACT%20Budget.pdf. 1-10 pp.

Dickey, D. A. and Fuller, W. A. 1981. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica. 49(4):1057-1072.

Franses, P. H. 2019. IMA (1, 1) as a new benchmark for forecast evaluation. Applied Economics Letters. 27(11):1419-1423.

Greene, W. H. 2014. Econometric analysis. 7th Ed. Pearson education limited. 1240 p.

Jadhav, V. B. V.; Chinnappa R. B. V. and Gaddi, G. M. 2017. Application of ARIMA model for forecasting agricultural prices. J. Agric. Sci. Technol. 19(5):981-992.

Judge, G. G. R. C.; Hill, W. E.; Griffiths, H. X. and Lütkepohl, T. Ch. 1985. Lee, introduction to the theory and practice of econometrics. 2nd. Ed. NewYork. 1024 p.

Luis, R. S.; García, S. R.; García, M. O.; Arana, C. A. y González, E. A. 2019. Metodología box Jenkins para pronosticar los precios de huevo blanco pagados al productor en México. Agrociencia. 53(6):911-925.

Luis, R. S.; García, S. R.; García, M. X. y Ramírez, M. E. G. 2019. Estimación de los precios mensuales de pollo en México, usando un modelo de función de transferencia. Avances de la investigación sobre producción animal y seguridad alimentaria en México. Universidad Michoacana de San Nicolás de Hidalgo. 1297-1301 pp.

Marroquín, M. G. y Chalita, T. L. E. 2011. Aplicación de la metodología box jenkins para pronóstico de precios en jitomate. Rev. Mex. Cienc. Agríc. 2(4):573-577.

SAS. Institute. 2014. SAS/ETS 13.2 User’s Guide. The arima procedure. Cary NC: SAS Institute Inc. 298 p.

Wackerly, D. D.; Mendenhall, W. and Scheaffer R. L. 2008. Mathematical statistics with applications, seventh Ed. Brooks-Cole, Belmont, CA USA. 939 p.

Published

2023-03-22

How to Cite

Martínez-Damián, Miguel Angel, and José de Jesús Brambila-Paz. 2023. “Modeling of Nominal Vs Real Price Predictors Applied to Corn, Wheat and Barley in Mexico”. Revista Mexicana De Ciencias Agrícolas 14 (2). México, ME:295-301. https://doi.org/10.29312/remexca.v14i2.2933.

Issue

Section

Investigation notes

Most read articles by the same author(s)