Leaf and grain morphology of Glycine max L. using digital images

Authors

  • Carlos Patricio Sauceda-Acosta Universidad Autónoma de Sinaloa-Facultad de Agricultura del Valle del Fuerte. Calle 16 Av. Japaraqui S/N, Juan José Ríos, Ahome, Sinaloa, México. CP. 81110
  • Franklin Gerardo Rodríguez-Cota Campo Experimental Valle del Fuerte-INIFAP. Carretera Internacional México-Nogales km 1609, Juan José Ríos, Guasave, Sinaloa, México. CP. 81110
  • Alberto Borbón-Gracia Campo Experimental Norman E. Borlaug-INIFAP. Calle Norman E. Borlaug km 12, Valle del Yaqui, Ciudad Obregón, Sonora, México. CP. 85000
  • Hugo Beltrán-Peña Universidad Autónoma de Sinaloa-Facultad de Agricultura del Valle del Fuerte. Calle 16 Av. Japaraqui S/N, Juan José Ríos, Ahome, Sinaloa, México. CP. 81110
  • Juan Fernando Sánchez-Portillo Universidad Autónoma de Sinaloa-Facultad de Agricultura del Valle del Fuerte. Calle 16 Av. Japaraqui S/N, Juan José Ríos, Ahome, Sinaloa, México. CP. 81110
  • Raúl Hipólito Sauceda-Acosta Campo Experimental Valle del Fuerte-INIFAP. Carretera Internacional México-Nogales km 1609, Juan José Ríos, Guasave, Sinaloa, México. CP. 81110

DOI:

https://doi.org/10.29312/remexca.v15i7.2912

Keywords:

Glycine max, color, ImageJ, shape, size

Abstract

Leaf and grain morphology of soybean (Glycine max L.) is necessary to identify varieties and explain their agronomic behavior, but it requires quantitative and easy-to-obtain measurements. This can be solved by digital image analysis (DIA); therefore, it was implemented to evaluate the leaf and grain morphology in the Cajeme, Guayparime S-10, and Harbar ’88 varieties. The DIA was automated in ImageJ 1.51 t to measure size, length, width, circularity, and color in leaflets (cm) and grains (mm). Specific leaf area (SLA, cm2 g-1), total grain area (TA, mm2), number of pods (NPP) and grains per plant (NGP), hectoliter weight (HEW, kg hl-1) and 100 grains (WHG, g) were also measured. The central leaflet was elliptical in shape, larger in size, and had SLA (p≤ 0.05), while the lateral ones were oval. Leaflet area (LA) was correlated (p≤ 0.01) with length, width, and their product (r≥ 0.93). Cajeme showed different leaf color (p≤ 0.01); Guayparime S-10 had higher LA, HEW, NPP and NGP but a grain that is smaller in size, length and width (p≤ 0.01). WHG was associated (p≤ 0.01) with TA (rs= 0.89), size (rs= 0.88), grain length and width (rs≥ 0.71), and leaf size (rs= -0.5). Harbar ’88 showed brighter grain, and Guayparime S-10 smaller grain (p≤ 0.01). The circularity of the leaflet facilitates the objective classification of the shape. The DIA is useful for phenotyping; it allows the identification of differences in leaflets and grains of the Cajeme, Guayparime S-10, and Harbar ’88 varieties.

Downloads

Download data is not yet available.

References

Chen, Y. and Nelson, R. L. 2004. Evaluation and classification of leaflet shape and size in wild soybean. Crop Sci. 44(2):671-677.

De la O, O. M.; Rangel, E. E.; López, H. L.; Villaseñor, H. E.; Peña, R. J. y Herrera, J. H. 2012. Calidad física de grano de trigos harineros (Triticum aestivum L.) mexicanos de temporal. Revista Mexicana de Ciencias Agrícola. 3(2):271-283.

Hammer, Ø.; Harper, D. A. T. and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1):1-9.

Hu, Z.; Zhang, H.; Kan, G.; Ma, D.; Zhang, D.; Shi, G.; Hong, D.; Zhang, G. and Yu, D. 2013. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica. 141(4-6):247-254.

Jacquemoud, S. and Ustin, S. L. 2008. Modeling leaf optical properties. Photobiological sciences Online. 27-35 pp. http://photobiology.info/Jacq-Ustin.html.

Jun, T. H.; Freewalt, K.; Michel, A. P. and Mian, R. 2014. Identification of novel QTL for leaf traits in soybean. Plant Breed. 133(1):61-66.

Keramatlou, I.; Sharifani, M.; Sabouri, H.; Alizadeh, M. and Kamkar, B. 2015. A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Sci. Hortic. 184(5):36-39.

Khan, A. Z.; Farhatulla, D.; Munir, I.; Begum, S. and Ara, N. 2018. Genotypic comparison of determinate and indeterminate soybean lines for yield and yield components. Pak. J. Bot. 50(1):131-134.

Krieger, J. D. 2014. A protocol for the creation of useful geometric shape metrics illustrated with a newly derived geometric measure of leaf circularity. Appl. Plant Sci. 2(8):1-6.

Krisnawati, A. Y. and Adie, M. M. 2017. The leaflet shape variation from several soybean genotypes in Indonesia. Biodiversitas. 18(1):359-364.

Kumar, M.; Govindasamy, V.; Rane, J.; Singh, A. K.; Choudhary, R. L.; Raina, S. K.; George, P.; Aher, L. K. and Singh, N. P. 2017. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. S. African J. Bot. 113(2017):230-238.

Liang, H.; Xu, L.; Yu, Y.; Yang, H.; Dong, W. and Zhang, H. 2016. Identification of QTLs with main, epistatic and QTL by environment interaction effects for seed shape and hundred-seed weight in soybean across multiple years. J. Genet. 95(2):475-477.

Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C. and Yang, W. 2017. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 200(2017):38-46.

Park, G. H.; Baek, I. Y.; Han, W. Y.; Kang, S. T.; Choung, M. G. and Ko, J. M. 2013. Correlation between leaf size and seed weight of soybean. Korean J. Crop Sci. 58(4):383-387.

Rehal, J.; Beniwal, V. and Gill, B. S. 2019. Physico-chemical, engineering and functional properties of two soybean cultivars. Legume Res. 42(1):39-44.

Richter, G. L.; Zanon, A. Z.; Streck, N. A.; Guedes, J. V.; Kräulich, B.; Rocha, T. S.; Winck, J. E. M. and Cera, J. C. 2014. Estimating leaf area of modern soybean cultivars by a non-destructive method. Bragantia. 73(4):416-425.

Rodríguez, C. F. G.; Manjarrez, S. P.; Cortez, M. E.; Sauceda, A. R.; Valenzuela, H. V.; González, G. D.; Garzón, T. J. y Velarde, F. S. 2017. Guayparime S-10, nueva variedad de soya resistente a mosca blanca y geminivirus para Sinaloa. Revista Mexicana de Ciencias Agrícola. 8(1):241-245.

Sauceda, A. C.; González, V. A.; Sánchez, B. H.; Sauceda, R. H.; Ramírez, H. M. y Quintana, J. G. 2017a. MACF-IJ, Método automatizado para medir color y área foliar mediante imágenes digitales. Agrociencia. 51(4):409-423.

Sauceda, A. C.; Villaseñor, H. E.; Lugo, G. A.; Partida, R. L.; González, V. A. y Reyes, O. A. 2017b. Tamaño y número de granos de trigo analizados mediante procesamiento de imagen digital. Revista Mexicana de Ciencias Agrícola. 8(3):517-529.

Sayama, T.; Tanabata, T.; Saruta, M.; Yamada, T.; Anai, T.; Kaga, A. and Ishimoto, M. 2017. Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the Ln gene in induced soybean mutants. Breed. Sci. 67(4):363-369.

Schwerz, F.; Caron, B. O.; Elli, E. F.; Stolzle, J. R.; Medeiros, S. L.; Sgarbossa, J. and Rockenbach, A. P. 2019. Microclimatic conditions in the canopy strata and its relations with the soybean yield. An. Acad. Bras. Cienc. 91(3):1-16.

UPOV. 1998. International Union for the Protection of new Varieties of Plants. Guidelines for the conduct of tests. For distinctness, uniformity and stability. (Glycine max (L.) Merr.). Ginebra, Suiza. 30-39 pp. http://www.upov.int/edocs/tgdocs/en/tg080.pdf.

UPOV. 2013. International Union for the Protection of new Varieties of Plants. Technical Working Party on Automation and Computer Programs-Revision of Document TGP/8: Part II: Techniques Used in DUS Examination, New Section: Examining Characteristics Using Image Analysis. Ginebra, Suiza. 27-36 pp. http://www.upov.int/edocs/mdocs/upov/en/twc-31/twc-31-20.pdf.

UPOV. 2017. International Union for the Protection of new Varieties of Plants). Guidelines for the conduct of tests. For distinctness, uniformity and stability. Soya bean (Glycine max (L.) Merr.). Ginebra, Suiza. 28-34 pp. http://www.upov.int/edocs/mdocs/upov/en/twa-46/tg-80-7-proj-3.pdf.

Yousif, A. M. 2014. Soybean grain storage adversely affects grain testa color, texture and cooking quality. J. Food Qual. 37(1):18-28.

Published

2024-11-12

How to Cite

Sauceda-Acosta, Carlos Patricio, Franklin Gerardo Rodríguez-Cota, Alberto Borbón-Gracia, Hugo Beltrán-Peña, Juan Fernando Sánchez-Portillo1, and Raúl Hipólito Sauceda-Acosta. 2024. “Leaf and Grain Morphology of Glycine Max L. Using Digital Images”. Revista Mexicana De Ciencias Agrícolas 15 (7). México, ME:e2912. https://doi.org/10.29312/remexca.v15i7.2912.

Issue

Section

Articles

Most read articles by the same author(s)