Quality of light from fluorescent lamps in cucumber growth and severity of Oidium sp.

Authors

  • Norma Delia Zazueta-Torres Doctorate in Agricultural Sciences-Faculty of Veterinary Medicine and Zootechnics-Autonomous University of Sinaloa. Boulevard San Ángel s/n, subdivision San Benito, Las Coloradas property, Culiacán, Sinaloa, Mexico. ZC. 80246.
  • Moisés Gilberto Yáñez-Juárez Faculty of Agronomy-Autonomous University of Sinaloa. Culiacan-Eldorado highway km 17.5, Culiacan, Sinaloa, Mexico. AP. 25. ZC. 80000.
  • Felipe Ayala Tafoya Faculty of Agronomy-Autonomous University of Sinaloa. Culiacan-Eldorado highway km 17.5, Culiacan, Sinaloa, Mexico. AP. 25. ZC. 80000. https://orcid.org/0000-0001-8003-4515
  • Teresa de Jesús Velázquez-Alcaraz Faculty of Agronomy-Autonomous University of Sinaloa. Culiacan-Eldorado highway km 17.5, Culiacan, Sinaloa, Mexico. AP. 25. ZC. 80000.
  • Carlos Alfonso López-Orona Faculty of Agronomy-Autonomous University of Sinaloa. Culiacan-Eldorado highway km 17.5, Culiacan, Sinaloa, Mexico. AP. 25. ZC. 80000.
  • Tomás Díaz-Valdés Directorate of Scientific Research Management-Universidad Central del Este. Ave. Francisco Alberto Caamaño Deñó, San Pedro de Macorís, Dominican Republic. ZC. 21000.

DOI:

https://doi.org/10.29312/remexca.v13i6.2800

Keywords:

Cucumis sativus L., blue light, powdery mildew, red light

Abstract

The quality of light affects the development of plants, due to the specific effects on photosynthesis, photomorphogenesis and other physiological and biochemical processes. It also has an important role in plant-pathogen interactions and controls various metabolic activities of fungi that determine their pathogenicity and severity. Three experiments were carried out under completely randomized designs to know the influence of fluorescent lamps of cool, neutral and warm white light, on the morphology and growth of cucumber plants (Cucumis sativus L.) and the severity of powdery mildew (Oidium sp.). In the growth chambers used, the photosynthetic photon flux density (PPFD) averaged 305 μmol m-2 s-1, but the spectral parameters related to red light (R:WWL> NWL> CWL) and blue light (B:CWL> NWL> WWL) were contrasting. The highest absolute amount of light R (122.04 μmol m-2 s-1), relative amount of R:PPFD (40.09%) and proportional amount of R:B (2.67) and R:FR (3.25) of WWL promoted greater height, leaf area, fresh and dry weight of leaves, stem and root of plants, while the greater absolute amount of light B (84.19 μmol m-2 s-1), relative amount of B:PPFD (27.48%) and proportional amount of B:R (1.04) and B:FR (2.65) of CWL induced lower plant height and greater stem thickness and leaf greenness index. The spectral parameters of CWL also disturbed the development of Oidium sp., which was reflected in less severity of powdery mildew compared to NWL or WWL.

Downloads

Download data is not yet available.

References

Ayala, T. F.; Yáñez, J. M. G.; Partida, R. L.; Ruiz, E. F. H.; Campos, G. H.; Vásquez, M. O.; Velázquez, A. T. J. y Díaz, V. T. 2015. Producción de pepino en ambientes diferenciados por mallas de sombreo fotoselectivo. ITEA. 1(111):3-17. https://doi.org/10.12706 /itea.2015.001. DOI: https://doi.org/10.12706/itea.2015.001

Casal, J. J. 2013. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 1(64):403-427. https://doi.org/10.1146/annurev-arplant-050312-120221. DOI: https://doi.org/10.1146/annurev-arplant-050312-120221

Chen, C. H.; Ringelberg, C. S.; Gross, R. H.; Dunlap, J. C. and Loros, J. J. 2009. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 8(28):1029-1042. https://dx.doi.org/10.1038%2Femboj.2009.54. DOI: https://doi.org/10.1038/emboj.2009.54

Chen, L.; Zhang, K.; Gong, X.; Wang, H.; Gao, Y.; Wang, X.; Zeng, Z. and Hu, Y. 2020. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. J. Integr. Agric. 1(19):108-119. https://doi.org/10.1016/S2095-3119(19)62633-X.

Chen, X. L.; Guo, W. Z.; Xue, X. Z.; Wang, L. C. and Qiao, X. J. 2014. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci. Hortic. 1(172):168-175. https://doi.org/10.1016/j.scienta.2014.04.009. DOI: https://doi.org/10.1016/j.scienta.2014.04.009

Cope, K. R. and Bugbee, B. 2013. Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortSci. 4(48):504-509. https://doi.org/10.21273/HORTSCI.48.4.504.

Damayanthi, R. N. K. and Decoteau, D. R. 1998. Involvement of gibberellins in phytochrome-regulated stem and petiole elongation in watermelon plants. HortSci. 3(33):493-494.

Demotes, M. S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi, T. S.; Crespel, L.; Morel, P.; Huché, T. L.; Boumaza, R.; Vian, A.; Guérin, V.; Leduc, N. and Sakr, S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 1(121):4-21. https://doi.org/10.1016/j.envexpbot.2015.05.010. DOI: https://doi.org/10.1016/j.envexpbot.2015.05.010

Ding, Y.; He, S.; Silva, J. A. T.; Li, G. and Tanaka, M. 2010. Effects of a new light source (cold cathode fluorescent lamps) on the growth of tree peony plantlets in vitro. Sci. Hortic. 125(2):167-169. https://doi.org/10.1016/j.scienta.2010.03.019. DOI: https://doi.org/10.1016/j.scienta.2010.03.019

Fan, X. X.; Xu, Z. G.; Liu, X. Y.; Tang, C. M.; Wang, L. W. and Han, X. I. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 1(153):50-55. https://doi.org/10.1016/j. scienta.2013.01.017. DOI: https://doi.org/10.1016/j.scienta.2013.01.017

Fukuda, N.; Ajima, C.; Yukawa, T. and Olsen, J. E. 2016. Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environ. Exp. Bot. 1(121):102-111. https://doi.org/10.1016/ j.envexpbot.2015.06.014. DOI: https://doi.org/10.1016/j.envexpbot.2015.06.014

Gupta, S. D. and Jatothu, B. 2013. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 3(7):211-220. http://dx.doi.org/10.1007/s11816-013-0277-0. DOI: https://doi.org/10.1007/s11816-013-0277-0

Heo, J.; Lee, C.; Chakrabarty, D. and Paek, K. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regul. 3(38):225-230. https://doi.org/10.1023/A: 1021523832488. DOI: https://doi.org/10.1023/A:1021523832488

Hernández, R.; Eguchi, T.; Deveci, M. and Kubota, C. 2016. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci. Hortic. 1(213):270-280. http://doi.org/10.1016/j.scienta. 2016.11.005. DOI: https://doi.org/10.1016/j.scienta.2016.11.005

Hernández, R. and Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 1(121):66-74. http://dx.doi.org/10.1016/j.envexpbot.2015.04.001. DOI: https://doi.org/10.1016/j.envexpbot.2015.04.001

Hogewoning, S. W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; Van Ieperen, W. and Harbinson, J. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 11(61):3107-3117. http://doi.org/10.1093/jxb/erq132. DOI: https://doi.org/10.1093/jxb/erq132

Hu, J.; Dai, X. and Sun, G. 2016. Morphological and physiological responses of Morus alba seedlings under different light qualities. Not. Bot. Horti Agrobot. Cluj-Napoca. 2(44):382-392. https://doi.org/10.15835/nbha44210486. DOI: https://doi.org/10.15835/nbha44210486

Idnurm, A. and Heitman, J. 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 4(3):615-626. https://dx.doi.org/10.1371%2 Fjournal.pbio.0030095. DOI: https://doi.org/10.1371/journal.pbio.0030095

Javanmardi, J. and Emami, S. 2013. Response of tomato and pepper transplants to light spectra provided by light emitting diodes. Inter. J. Veg. Sci. 2(19):138-149. http://doi.org/10.1080/ 19315260.2012.684851. DOI: https://doi.org/10.1080/19315260.2012.684851

Jing, X.; Wang, H.; Gong, B.; Liu, S.; Wei, M.; Ai, X.; Li, Y. and Shi, Q. 2018. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. Plant Physiol. Biochem. 1(124):77-87. https://doi.org/10. 1016/j.plaphy.2017.12.039. DOI: https://doi.org/10.1016/j.plaphy.2017.12.039

Kurepin, L. V.; Emery, R. J. N.; Pharis, R. P. and Reid, D. M. 2007. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J. Exp. Bot. 58(8):2145-2157. https://doi.org/10.1093/jxb/ erm068. DOI: https://doi.org/10.1093/jxb/erm068

Li, C.; Xu, Z. G.; Dong, R. Q.; Chang, S.; Wang, L. Z.; Khalil, U. R. M. and Tao, J. M. 2017. An RNA-seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red LED light, and white fluorescent light. Front. Plant Sci. 1(8):1-16. https://doi.org /10.3389/fpls.2017.00078. DOI: https://doi.org/10.3389/fpls.2017.00078

Li, T. and Yang, Q. 2015. Advantages of diffuse light for horticultural production and perspectives for further research. Front. Plant Sci. 1(6):1-5. https://doi.org/10.3389/fpls.2015.00704. DOI: https://doi.org/10.3389/fpls.2015.00704

Lin, K. H.; Huang, M. Y.; Huang, W. D.; Hsu, M. H.; Yang, Z. W. and Yang, C. M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 1(150):86-91. https://doi.org/10.1016/j.scienta.2012.10.002. DOI: https://doi.org/10.1016/j.scienta.2012.10.002

Neff, M. C.; Fankhauser, J. and Chory, J. 2000. Light: an indicator of time and place. Genes Develop. 3(14):257-271.

Nelson, J. A. and Bugbee, B. 2015. Analysis of environmental effects on leaf temperature under sunlight, high pressure sodium and light emitting diodes. PLoS ONE. 10(10):1-13. https://doi.org/10.1371/journal.pone.0138930. DOI: https://doi.org/10.1371/journal.pone.0138930

Purschwitz, J.; Muller, S.; Kastner, C. and Fischer, R. 2006. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 6(9):566-571. https://doi.org/10.1016/j.mib.2006.10.011. DOI: https://doi.org/10.1016/j.mib.2006.10.011

Rahman, M. Z.; Honda, Y. and Arase, S. 2003. Red-light induced resistance in broad bean (Vicia faba L.) to leaf spot disease caused by Alternaria tenuissima. J. Phytopathol. 2(151):86-91. https://doi.org/10.1046/j.1439-0434.2003.00685.x. DOI: https://doi.org/10.1046/j.1439-0434.2003.00685.x

Runkle, E. S.; Padhye, S. R.; Oh, W. and Getter, K. 2012. Replacing incandescent lamps with compact fluorescent lamps may delay flowering. Sci. Hortic. 1(143):56-61. https://doi.org/ 10.1016/j.scienta.2012.05.028. DOI: https://doi.org/10.1016/j.scienta.2012.05.028

Saavedra, E.; Rey, F. J. y Luyo, J. 2016. Sistemas de iluminación, situación actual y perspectivas. TECNIA. 2(26):44-62. http://dx.doi.org/10.21754/tecnia.v26i2.57. DOI: https://doi.org/10.21754/tecnia.v26i2.57

Snowden, M. C.; Cope, K. R. and Bugbee, B. 2016. Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS One. 10(11):e0163121. http://dx.doi.org/10.1371/journal.pone.0163121. DOI: https://doi.org/10.1371/journal.pone.0163121

Song, J.; Meng, Q. W.; Du, W. F. and He, D. 2017. Effects of light quality on growth and development of cucumber seedlings in controlled environment. Inter. J. Agric. Biol. Eng. 3(10):312-318. http://dx.doi.org/10.3965/j.ijabe.20171003.2299.

Staal, M.; Elzenga, J. T. M.; Van Elk, A. G.; Prins, H. B. A. and Van Volkenburgh, E. 1994. Red and blue light-stimulated proton efflux by epidermal leaf-cells of the Argenteum mutant of Pisum sativum. J. Exp. Bot. 9(45):1213-1218. http://dx.doi.org/10.1093/jxb/45.9.1213. DOI: https://doi.org/10.1093/jxb/45.9.1213

StatSoft. 2004. Statistica (data analysis software system), version 7. www.statsoft.com.

Suzuki, T.; Nishimura, S.; Yagi, K.; Nakamura, R.; Takikawa, Y.; Matsuda, Y.; Kakutani, K. and Nonomura, T. 2018. Effects of light quality on conidiophore formation of the melon powdery mildew pathogen Podosphaera xanthii. Phytoparasitica. 1(46):31-43. https://doi.org/10.1007/s12600-017-0631-9. DOI: https://doi.org/10.1007/s12600-017-0631-9

Tisch, D. and Schmoll, M. 2010. Light regulation of metabolic pathways in fungi. Appl. Microbiol Biotechnol. 5(85):1259-1277. https://dx.doi.org/10.1007%2Fs00253-009-2320-1. DOI: https://doi.org/10.1007/s00253-009-2320-1

Van Volkenburgh, E. 1999. Leaf expansion -an integrating plant behaviour. Plant Cell Environ. 12(22):1463-1473. http://dx.doi.org/10.1046/j.1365-3040.1999.00514.x. DOI: https://doi.org/10.1046/j.1365-3040.1999.00514.x

Wang, H.; Jiang, Y. P.; Yu, H. J.; Xia, X. J.; Shi, K.; Zhou, Y. H. and Yu, J. Q. 2010. Light quality affects incidence of powdery mildew, expression of defense-related genes and associated metabolism in cucumber plants. Eur. J. Plant Pathol. 1(127):125-135. https://doi.org/ 10.1007/s10658-009-9577-1. DOI: https://doi.org/10.1007/s10658-009-9577-1

Wang, J.; Lu, W.; Tong, Y. and Yang, Q. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 1(7):1-10. https://doi.org/10.3389 /fpls.2016.00250. DOI: https://doi.org/10.3389/fpls.2016.00250

Wang, X. Y.; Xu, X. M. and Cui, J. 2014. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica. 2(53):213-222. https://doi.org/10.1007/s11099-015-0083-8. DOI: https://doi.org/10.1007/s11099-015-0083-8

Xiaoying, L.; Shirong, G.; Taotao, C.; Zhigang, X. and Tezuka, T. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 22(11):6169-6177. https://doi.org/10.5897/ AJB11.1191. DOI: https://doi.org/10.5897/AJB11.1191

Xu, H.; Fu, Y.; Li, T. and Wang, R. 2017. Effects of different LED light wavelengths on the resistance of tomato against Botrytis cinerea and the corresponding physiological mechanisms. J. Integr. Agric. 16(1):106-114. https://doi.org/10.1016/S2095-3119(16)61435-1. DOI: https://doi.org/10.1016/S2095-3119(16)61435-1

Yan, Z.; He, D.; Niu, G. and Zhai, H. 2019. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci. Hortic. 1(248):138-144. https://doi.org/10.1016/j.scienta.2019.01.002.

Yang, Z.; He, W.; Mou, S.; Wang, X.; Chen, D.; Hu, X.; Chen, L. and Bai, J. 2017. Plant growth and development of pepper seedlings under different photoperiods and photon flux ratios of red and blue LEDs. Trans. Chin. Soc. Agri. Eng. 33(17):173-180. https://doi.org/10. 11975/j.issn.1002-6819.2017.17.023.

Yu, W.; Liu, Y., Song, L.; Jacobs, D. F.; Du, X.; Ying, Y.; Shao, Q. and Wu, J. 2017. Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. J. Plant Growth Regul. 1(36):148-160. https://doi.org/10.1007/s00344-016-9625-y. DOI: https://doi.org/10.1007/s00344-016-9625-y

Published

2022-10-24

How to Cite

Zazueta-Torres, Norma Delia, Moisés Gilberto Yáñez-Juárez, Felipe Ayala Tafoya, Teresa de Jesús Velázquez-Alcaraz, Carlos Alfonso López-Orona, and Tomás Díaz-Valdés. 2022. “Quality of Light from Fluorescent Lamps in Cucumber Growth and Severity of Oidium Sp”. Revista Mexicana De Ciencias Agrícolas 13 (6). México, ME:977-89. https://doi.org/10.29312/remexca.v13i6.2800.

Issue

Section

Articles

Most read articles by the same author(s)