Statistical model for predicting corn grain yield
DOI:
https://doi.org/10.29312/remexca.v12i3.2482Keywords:
Zea mays L., nitrogen, population densityAbstract
The growth of the world population leads to the demand for food, and these must be obtained through the efficient use of resources, this could be achieved by planning and prioritizing the factors that involved in production processes. Simulation models are a tool with which it can visualize scenarios and quantify the inputs to use. In this work, with data on maximum maize yields (RG) from 1943 to 2017 obtained from global field experiments and predominantly data from the United States of America (80%), a statistical model was generated to estimate grain yield in maize (RGE) and to support the decision-making of those involved in the grain maize production process. The most important variables to express the model were: population density (DP), potassium dose (K), irrigation sheet (LR), nitrogen dose (N) and phosphorus dose (P) and were used to generate the model with the stepwise multiple regression method and expressed as: RGE= 3.158205 + 0.693319 (DP) - 0.022246 (K) + 0.005990 (LR)+ 0.010687 (N) + 0.013794 (P), had an R2= 0.73 and a standard error of 0.964 Mg ha-1. DP was the variable that explained in greater proportion the value of RGE, with the analysis of RG data the increase in the planting rate over time was observed to achieve a higher DP and increase the RG, which generated the demand for inputs.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.