Efecto bioestimulante de rizobacterias benéficas sobre el rendimiento y compuestos bioactivos de pepino

Autores/as

  • Gerardo Zapata-Sifuentes Universidad Autónoma Agraria Antonio Narro-Unidad Laguna. Carretera periférico s/n. Colonia Valle Verde Torreón, Coahuila, México. CP. 27054
  • Oscar Sariñana-Aldaco Programa Posdoctoral CONAHCYT-Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Eduardo Alberto Lara-Reimers Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Juan Antonio Torres-Rodríguez Universidad Técnica Estatal de Quevedo, Quevedo, Los Ríos, Ecuador. CP. 120501
  • Aracely Zuñiga-Serrano Universidad Autónoma Agraria Antonio Narro-Unidad Laguna. Carretera periférico s/n. Colonia Valle Verde Torreón, Coahuila, México. CP. 27054.
  • Pablo Preciado-Rangel Universidad Autónoma Agraria Antonio Narro-Unidad Laguna. Carretera periférico s/n. Colonia Valle Verde Torreón, Coahuila, México. CP. 27054

DOI:

https://doi.org/10.29312/remexca.v16i3.3948

Palabras clave:

Cucumis sativus L, biocebado, bioestimulación

Resumen

El uso de microorganismos benéficos en la agricultura como las bacterias es una práctica que permite mejorar la producción de cultivos agrícolas, ya que pueden actuar como estimuladoras, biofertilizantes y como organismos antagonistas contra patógenos. El objetivo del estudio fue evaluar el cebado de semillas y drench en pepino con bacterias benéficas sobre el rendimiento y síntesis de compuestos bioactivos de los frutos. Las bacterias utilizadas fueron Pseudomonas paralactis, Sinorhizobium meliloti y Acinetobacter radioresistens, aunado a esto se utilizó un control con agua destilada. Los resultados indican que las cepas utilizadas mejora-ron el crecimiento y acumulación de biomasa de las plantas en comparación con el control, lo que se reflejó en un mayor longitud, diámetro y rendimiento del fruto de pepino, siendo A. radioresistens la que incremento el rendimiento en mayor medida en comparación con el control (37.78%). En cuanto a los compuestos bioactivos (fenoles totales, flavonoides y ácido ascórbico), capacidad antioxidante y proteínas, las cepas bacterias los mejoraron sustancialmente en comparación al control, el cual presentó los valores más bajos. Estos resultados nos confirman que la aplicación de las bacterias es una alternativa prometedora para mejorar la producción y calidad de los cultivos agrícolas de una forma sostenible.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Brand-Williams, W.; Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.

Cardarelli, M.; Woo, S. L.; Rouphael, Y. and Colla, G. 2022. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants. 11:259-265. https://doi.org/10.3390/plants11030259.

Chakraborti, S.; Bera, K.; Sadhukhan, S. and Dutta, P. 2022. Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress. https://doi.org/10.1016/j.stress.2021.100052.

Corbineau, F.; Taskiran-Özbingöl, N. and El-Maarouf-Bouteau, H. 2023. Improvement of seed quality by priming: concept and biological basis. Seeds. 2:101-115. https://doi.org/10.3390/seeds2010008.

De Pascale, S.; Rouphael, Y. and Colla, G. 2017. Plant biostimulants: innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science. 82:277-285. https://doi.org/10.17660/eJHS.2017/82.6.2.

Ding, Z.; Ali, E. F.; Almaroai, Y. A.; Eissa, M. A. and Abeed, A. H. A. 2021. effect of potassium solubilizing bacteria and humic acid on faba bean (Vicia faba L.) plants grown on sandy loam soils. Journal of Soil Science and Plant Nutrition. 21:791-800. https://doi.org/10.1007/s42729-020-00401-z.

du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae. 196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021.

Fiodor, A.; Ajijah, N.; Dziewit, L. and Pranaw, K. 2023. Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology. 14:1142966. https://doi.org/10.3389/fmicb.2023.1142966.

Gómez-Godínez, L. J.; Aguirre-Noyola, J. L.; Martínez-Romero, E.; Arteaga-Garibay, R. I.; Ireta-Moreno, J. and Ruvalcaba-Gómez, J. M. 2023. A look at plant-growth-promoting bacteria. Plants. 12:1668. https://doi.org/10.3390/plants12081668.

González-García, Y.; López-Vargas, E. R.; Pérez-Álvarez, M.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Valdés-Reyna, J.; Pérez-Labrada, F. and Juárez-Maldonado, A. 2022b. Seed priming with carbon nanomaterials improves the bioactive compounds of tomato plants under saline stress. Plants. 11:1984-1991. https://doi.org/10.3390/plants11151984.

González-García, Y.; Flores-Robles, V.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Cabrera De La Fuente, M.; Sandoval-Rangel, A. and Juárez-Maldonado, A. 2022a. Application of two forms of silicon and their impact on the postharvest and the content of bioactive compounds in cucumber (Cucumis sativus L.) fruits. Biocell. 46:2497-2506. https://doi.org/10.32604/biocell.2022.021861.

Hernández-Hernández, H.; Quiterio-Gutiérrez, T.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; Hernández-Fuentes, A. D.; Cabrera-Fuente, M.; Valdés-Reyna, J. and Juárez-Maldonado, A. 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants. 8:355-362. https://doi.org/10.3390/plants8100355.

Irshad, K.; Shaheed-Siddiqui, Z.; Chen, J.; Rao, Y.; Hamna-Ansari, H.; Wajid, D.; Nida, K. and Wei, X. 2023. Bio-priming with salt tolerant endophytes improved crop tolerance to salt stress via modulating photosystem II and antioxidant activities in a sub-optimal environment. Frontiers in Plant Science. 14:1082480. https://doi.org/10.3389/fpls.2023.1082480.

Juárez-Maldonado, A.; Tortella, G.; Rubilar, O.; Fincheira, P. and Benavides-Mendoza, A. 2021. Biostimulation and toxicity: the magnitude of the impact of nanomaterials in microorganisms and plants. Journal of Advanced Research. 31:113-126. https://doi.org/10.1016/j.jare.2020.12.011.

Kaur, M. and Sharma, P. 2021. Recent advances in cucumber (Cucumis sativus L.). Journal of Horticultural Science and Biotechnology. 97:3-23. https://doi.org/10.1080/14620316.2021.1945956.

Khan, A.; Singh, A. V.; Gautam, S. S.; Agarwal, A.; Punetha, A.; Upadhayay, V. K.; Kukreti, B.; Bundela, V.; Jugran, A. K. and Goel, R. 2023. Microbial bioformulation: a microbial assisted biostimulating fertilization technique for sustainable agriculture. Frontiers in Plant Science. 14:1270039. https://doi.org/10.3389/fpls.2023.1270039.

Kőmíves, T. and Király, Z. 2019. Disease resistance in plants: the road to phytoalexins and beyond. Ecocycles. 5:7-12. https://doi.org/10.19040/ecocycles.v5i1.132.

Kopecká, R.; Kameniarová, M.; Černý, M.; Brzobohatý, B. y Novák, J. 2023. Abiotic stress in crop production. International Journal of Molecular Sciences. 24:6603. https://doi.org/10.3390/ijms24076603.

Lastochkina, O.; Garshina, D.; Ivanov, S.; Yuldashev, R.; Khafizova, R.; Allagulova, C.; Fedorova, K.; Avalbaev, A.; Maslennikova, D. and Bosacchi, M. 2020. Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants. 9:1810. https://doi.org/10.3390/plants9121810.

Lei, X.; Shen, Y.; Zhao, J.; Huang, J.; Wang, H.; Yu, Y. and Xiao, C. 2023. Root exudates mediate the processes of soil organic carbon input and efflux. plants. 12:630-637. https://doi.org/10.3390/plants12030630.

Mahmud, K.; Makaju, S.; Ibrahim, R. and Missaoui, A. 2020. Current progress in nitrogen fixing plants and microbiome research. Plants. 9:97-104. https://doi.org/10.3390/plants9010097.

Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Tintor, B.; Milošević, D.; Ignjatov, M. and Nikolić, Z. 2022. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy to Improve seed germination and the Initial Seedling Growth. Plants. 11:1927. https://doi.org/10.3390/plants11151927.

Moreno-Reséndez, A.; Reyes-Carrillo, J. L.; López-Salazar, R.; Leos-Escobedo, L. y Espinoza-Banda, A. 2023. Rendimiento del melón (Cucumis melo L.) con acolchado plástico: aplicando vermicompost como fuente nutritiva. Ecosistemas y Recursos Agropecuarios. 10:e3339. https://doi.org/10.19136/era.a10n1.3339.

Nitu, R.; Rajinder, K. and Sukhminderjit, K. 2020. Zinc solubilizing bacteria to augment soil fertility-a comprehensive review. International Journal of Agricultural Sciences and Veterinary Medicine. 8:38-44.

Orozco-Mosqueda, M. C.; Flores, A.; Rojas-Sánchez, B.; Urtis-Flores, C. A.; Morales-Cedeño, L. R.; Valencia-Marin, M. F.; Chávez-Avila, S.; Rojas-Solis, D. and Santoyo, G. 2021. Plant growth-promoting bacteria as bioinoculants: Attributes and challenges for sustainable crop improvement. Agronomy. 11:1167. https://doi.org/10.3390/agronomy11061167.

Pereira, M. M. A.; Morais, L. C.; Marques, E. A.; Martins, A. D.; Cavalcanti, V. P.; Rodrigues, F. A.; Gonçalves, W. M.; Blank, A. F.; Pasqual, M. and Dória, J. 2019. Humic substances and efficient microorganisms: elicitation of medicinal plants-a review. Journal of Agricultural Science. 11:268-280. https://doi.org/10.5539/jas.v11n7p268.

Pérez-García, L. A.; Sáenz-Mata, J.; Fortis-Hernández, M.; Navarro-Muñoz, C. E.; Palacio-Rodríguez, R. and Preciado-Rangel, P. 2023. Plant-growth-promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy. 13:315-321. https://doi.org/10.3390/agronomy13020315.

Rajendra, P. S.; Uma, R. U. and Rajatha, K. D. 2020. Seed bio-priming: plant growth promoting microorganisms in enhancing crop productivity and stress tolerance-a review. Mysore Journal of Agricultural Sciences. 54:1-18.

Ramírez-Cariño, H. F.; Ochoa-Velasco, C. E.; Guerrero-Analco, J. A.; Monribot-Villanueva, J. L.; Calderón-García, C.; González-Terreros, E.; Escamirosa-Tinoco, C.; Morales, I. and Valadez-Blanco, R. 2023. Combined effect of the potassium dose and plant biofertilization by Acinetobacter calcoaceticus on the growth, mineral content, nutritional quality, antioxidant activity, and metabolomic features of tomatillo fruits (Physalis ixocarpa Brot.). Plants. 12:466. https://doi.org/10.3390/plants12030466.

Rawat, P.; Das, S.; Shankhdhar, D. and Shankhdhar, S. C. 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition. 21:49-68. https://doi.org/10.1007/s42729-020-00342-7.

Sánchez-Cariillo, R. and Guerra-Ramírez, P. 2022. Pseudomonas spp. beneficial in agriculture. Revista Mexicana de Ciencias Agricolas. 13(esp):715-725.

Shahrajabian, M. H.; Petropoulos, S. A. and Sun, W. 2023. Survey of the Influences of microbial biostimulants on horticultural crops: case studies and successful paradigms. Horticulturae. 9:193-198. https://doi.org/10.3390/horticulturae9020193.

Shao, Z.; Arkhipov, A.; Batool, M.; Muirhead, S. R.; Harry, M. S.; Ji, X.; Mirzaee, H.; Carvalhais, L. C. and Schenk, P. M. 2023. Rhizosphere bacteria biofertiliser formulations improve lettuce growth and yield under nursery and field conditions. Agriculture. 13:1911. https://doi.org/10.3390/agriculture13101911.

Singleton, V. L.; Orthofer, R. and Lamuela-Raventós, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1.

Steiner, A. A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil. 15:134-154. https://doi.org/10.1007/BF01347224.

Toro, I. S.; Calderón, J. M. and Zavaleta, V. D. 2020. Phenotypic characteristics of ensifer meliloti y ensifer medicae (Rhizobiaceae) isolated from Medicago sativa L. (Fabaceae) in agricultural areas of Trujilo, Perú. Arnaldoa. 27:741-750. https://doi.org/10.22497/arnaldoa.273.27305.

Trejo-Valencia, R.; Sánchez-Acosta, L.; Fortis-Hernández, M.; Preciado-Rangel, P.; Gallegos-Robles, M. Á.; Antonio-Cruz, R. del C. y Vázquez-Vázquez, C. 2018. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy. 8:264-271. https://doi.org/10.3390/agronomy8110264.

Zapata-Sifuentes, G.; Fortis-Hernández, M.; Sáenz-Mata, J.; Silva-Martínez, C.; Lara-Capistran, L.; Preciado-Rangel, P. y Hernández-Montiel, L. G. 2024. Effect of plant growth promoting rhizobacteria on the development and biochemical composition of cucumber under different substrate moisture levels. Microbiology Research. 15:1505-1515. https://doi.org/10.3390/microbiolres15030102.

Zhishen, J.; Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64:555-559. https://doi.or0g/10.1016/S0308-8146(98)00102-2.

Publicado

2025-05-18

Cómo citar

Zapata-Sifuentes, Gerardo, Oscar Sariñana-Aldaco, Eduardo Alberto Lara-Reimers, Juan Antonio Torres-Rodríguez, Aracely Zuñiga-Serrano, y Pablo Preciado-Rangel. 2025. «Efecto Bioestimulante De Rizobacterias benéficas Sobre El Rendimiento Y Compuestos Bioactivos De Pepino». Revista Mexicana De Ciencias Agrícolas 16 (3). México, ME:e3948. https://doi.org/10.29312/remexca.v16i3.3948.

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>