Conservación fisicoquímica de arándanos tratados con quitosano y ácido salicílico en poscosecha

Autores/as

  • Surelys Ramos-Bell Laboratorio Integral de Investigación en Alimentos-Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Avenida Tecnológico Núm. 2595, Col. Lagos del Country, Tepic, Nayarit, México. CP. 63175
  • Gerónimo Diaz-Cayetano 1Laboratorio Integral de Investigación en Alimentos-Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Avenida Tecnológico Núm. 2595, Col. Lagos del Country, Tepic, Nayarit, México. CP. 63175
  • Luis Guillermo Hernández-Montiel Centro de Investigaciones Biológicas del Noroeste, SC. La Paz, Baja California Sur, México. CP. 23096
  • Rita María Velázquez-Estrada Laboratorio Integral de Investigación en Alimentos-Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Avenida Tecnológico Núm. 2595, Col. Lagos del Country, Tepic, Nayarit, México. CP. 63175.
  • Efigenia Montalvo-González Laboratorio Integral de Investigación en Alimentos-Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Avenida Tecnológico Núm. 2595, Col. Lagos del Country, Tepic, Nayarit, México. CP. 63175.
  • Porfirio Gutiérrez-Martínez Laboratorio Integral de Investigación en Alimentos-Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Avenida Tecnológico Núm. 2595, Col. Lagos del Country, Tepic, Nayarit, México. CP. 63175

DOI:

https://doi.org/10.29312/remexca.v15i5.3391

Palabras clave:

Vaccinium corymbosum, calidad, tratamientos alternativos

Resumen

Resumen

El fruto de arándano (Vaccinium corymbosum L.) se caracteriza por sus propiedades antioxidantes debido a su contenido de compuestos fenólicos, antocianinas y otros. Sin embargo, es susceptible al deterioro, pérdida de su calidad y vida útil. Para conservar sus propiedades fisicoquímicas y su calidad se propone el empleo del tratamiento combinado de quitosano y ácido salicílico como principal objetivo. La investigación se desarrolló durante el año 2022, en la cual se evaluó la conservación de frutos de arándanos en etapa postcosecha mediante la aplicación de un tratamiento combinado de quitosano y ácido salicílico. La evaluación de los parámetros de calidad mostró que la aplicación del tratamiento combinado mantuvo la firmeza de los frutos por más tiempo y redujo la pérdida fisiológica de peso, hasta en un 11%. Los cambios en los sólidos solubles totales, pH, acidez titulable y color de los arándanos se retrasaron por más días, pero se mantuvo la calidad poscosecha de los frutos. La velocidad de respiración de los arándanos se redujo al aplicar quitosano más ácido salicílico y hubo una inducción de la enzima fenilalanina amonio liasa durante las primeras 24 h de almacenamiento de los arándanos, por efecto del quitosano combinado con ácido salicílico. Mediante esta investigación se llegó a la conclusión de que el quitosano y ácido salicílico como tratamiento combinado, pueden ser una alternativa sustentable al uso de fungicidas para preservar frutos de arándanos en etapa postcosecha.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bibliografía

AOAC. 2005. Official Methods of Analysis of The Association of Official Analytical. Chemists international. 15th Ed. Arlington, Virginia. 40-88 pp.

Berumen-Varela, G.; Partida-Coronado, D.; Leonardo-Jiménez, O.; López-Chacón, Alhelí Verónica; Alejandra Martina y Martínez Gutiérrez, Porfirio. 2015. “Efecto del quitosano en la inducción de resistencia contra Colletotrichum sp. en mango (Mangifera indica l.) cv. Tommy Atkins.” Investigación y Ciencia: de la Universidad Autónoma de Aguascalientes. 23(66):16-21.

Chiabrando, V. and Giacalone, G. 2017. Quality evaluation of blueberries coated with chitosan and sodium alginate during postharvest storage. Int. Food Res. J. 24(4):1553-61.

Chiabrando, V. X.; Peano, C. y Giacalone, G. 2017. The efficacy of different postharvest treatments on physico-chemical characteristics, bioactive components and microbiological quality of fresh blueberries during storage period. Food Res. 1(6):240-248. https://doi.org/10.26656/fr.2017.6.105.

da Rocha-Neto, A. C.; Maraschin, M. y Di Piero, R. M. 2015. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int. J. Food Microbiol. 215(1):64-70. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018.

da Rocha-Neto, A. C.; Luiz, C.; Maraschin, M. y Di Piero, R. M. 2016. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. Int. J. Food Microbiol. 221(16):54-60. https://doi.org/10.1016/j.ijfoodmicro.2016.01.007.

Díaz-Rodríguez, L. B y Avila-Hernández, R. M. 2021. Tecnologías postcosecha para promover la vida de anaquel de frutos pequeños. Revista Iberoamericana de Tecnología Postcosecha. 22(1):30-49.

Duan, C.; Meng, X.; Meng, J.; Khan, I. H.; Dai, L.; Khan, A. and An, X. 2019. Chitosan as a preservative for fruits and vegetables: a Review on Chemistry and Antimicrobial Properties. J. Bioresources and Bioproducts. 4(1):11-21. https://doi.org/10.21967/jbb.v4i1.189.

Eldib, R.; Ebtihal K.; Abeer E.; Nada B. and Mahmoud H. 2020. Chitosan, nisin, silicon dioxide nanoparticles coating films effects on blueberry (Vaccinium Myrtillus) Quality. Coatings. 10(10):1-12. https://doi.org/10.3390/coatings10100962.

Herrera-González, J. A.; Bautista-Baños, S.; Serrano, M.; Gianfranco, R. and Gutiérrez-Martínez, P. 2021. Nonchemical treatments for the pre and post-harvest elicitation of defense mechanisms in the fungi-avocado pathosystem. Molecules. 26(22):1.12. https://doi.org/10.3390/molecules26226819.

Herrera-González, J. A.; Hernández-Sánchez, D. A.; Bueno-Rojas, D. A; Ramos-Bell, S.; Velázquez-Estrada, R. M.; Bautista-Rosales, P. U. and Gutiérrez-Martínez, P. 2022. Effect of commercial chitosan on in vitro inhibition of Colletotrichum siamense, fruit quality and elicitor effect on the postharvest avocado fruit. Revista Mexicana de Ingeniería Química. 21(1):1-5. https://doi.org/10.24275/rmiq/Bio2706.

Jiang, H.; Sun, Z.; Jia, R.; Wang, X. and Huang, J. 2016. Effect of chitosan as an antifungal and preservative agent on postharvest blueberry. J. Food Qual. 39(5):516-523. https://doi.org/10.1111/jfq.12211

Li, Y.; Rokayya, S.; Jia, F.; Nie, X.; Xu, J.; Elhakem, A.; Almatrafi, M.; Benajiba, N. and Helal, M. 2021. Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Scientific reports. 11(1):1-10. https://doi.org/10.1038/s41598-020-80056-z.

Liu, B.; Wang, K.; Shu, X.; Liang, J.; Fan, X. and Sun, L. 2018. Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage. Sci. Hortic. (Amsterdam). 1(246):557-562. Doi: 10.1016/j.scienta.2018.11.042.

Mannozzi, C.; Cecchini, J. P.; Tylewicz, U.; Siroli, L.; Patrignani, F.; Lanciotti, R.; Rocculi, P.; Dalla, R. M. and Romani, S. X. 2017. Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT Food Sci. Technol. 85(B):440-444. https://doi.org/10.1016/j.lwt.2016.12.056.

Montalvo-González, E.; Nolasco-Gonzalez, Y.; García-Magaña, M. L; Medellín-Bautista, C. M.; Hernández-Fuentes, L. M. y González-Hernández, H. 2021. Efecto de recubrimientos en la maduración de yaca almacenada en condición simulada de mercadeo. Revista Mexicana de Ciencias Agrícolas. 12(2):219-234. https://doi.org/10.29312/remexca.v12i2.2319.

Moreno-Hernández, C. L.; Zambrano-Zaragoza, M. L.; Velázquez-Estrada, R. M.; Sánchez-Burgos, J. A. and Gutierrez-Martínez, P. 2022. Identification of a Colletotrichum species from mango fruit and it’s in vitro control by GRAS compounds. Revista Mexicana de Ingeniería Química. 21(3):1-11. https://doi.org/10.24275/rmiq/Bio2777.

Ortiz-Duarte, G.; Pérez-Cabrera, L. E.; Artés-Hernández, F. and Martínez-Hernández, G. B. 2019. Ag-chitosan nanocomposites in edible coatings affect the quality of fresh cut melon. Postharvest Biol. Technol. 174-184 pp. https://doi.org/10.1016/j.postharvbio.2018.09.021.

Qin, X.; Hongmei, X.; Changhui, X.; Zhifang, Y.; Rong, Y.; Zikang, C. and Linyuan, S. 2015. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol. Technol. 100:160-67. https://doi.org/10.1016/j.postharvbio.2014.09.010.

Ramos-Bell, S.; Hernández-Montiel, L. G.; González-Estrada, R. R. and Gutiérrez-Martínez, P. 2021 Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. LWT Food Sci. Technol. 149:7-12. https://doi.org/10.1016/j.lwt.2021.112046.

Ramos-Bell, S.; Hernández-Montiel, L. G.; Velázquez-Estrada, R. M.; Sánchez-Burgos, J. A.; Bautista-Rosales, P. U. and Gutiérrez-Martínez. P. 2022. Additive effect of alternative treatment to chemical control of Botrytis cinerea in blueberries. Revista Mexicana de Ingeniería Química. 21(3):1-13. https://doi.org/10.24275/rmiq/Bio2839.

Ramos-Guerrero, A.; González-Estrada, R. R.; Hanako-Rosas, G.; Bautista-Baños, S.; Acevedo-Hernández, G.; Tiznado-Hernández, M. E. and Gutiérrez-Martínez, P. 2018. Use of Inductors in the control of colletotrichum gloeosporioides and rhizopus stolonifer isolated from soursop fruits: In Vitro tests. Food Sci. Biotechnol. 27(3):755-63. https://doi.org/10.1007/s10068-018-0305-5.

Rodríguez-Guzmán, C. A.; Montaño-Leyva, B.; Sánchez-Burgos, J. A.; Bautista-Rosales, P. U. y Gutiérrez-Martínez, P. 2022. Chitosan and GRAS substances application in the control of Geotrichum candidum isolated from tomato fruits (Lycopersicum esculentum L.) in the state of Nayarit, Mexico: in vitro tests. Revista Mexicana de Ingeniería Química. 21(3):1-16. https://doi.org/10.24275/rmiq/Bio2790.

Rokayya, S.; Fuguo, J.; Yang, L.; Xin, N.; Jingwen, X.; Rui, H.; Huiying, Y.; Sikandar, A.; Manal, M. A. and Mahmoud, H. 2021. Application of nano-titanum dioxide coating on fresh highbush blueberries shelf life stored under ambient temperature. LWT Food Sci. Technol. 137:2-9. https://doi.org/10.1016/j.lwt.2020.110422.

Serna-Escolano, V.; Martínez-Romero, D.; Giménez, M. J.; Serrano, M.; García-Martínez, S.; Valero, D.; Valverde, J. M. and Zapata, P. J. 2021. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem. 338:1-7. https://doi.org/10.1016/j.foodchem.2020.128044.

Shao, Y. Z.; Zeng, J. K.; Tang, H.; Zhou, Y. and Li, W. 2019. The chemical treatments combined with antagonistic yeast control anthracnose and maintained the quality of postharvest mango fruit. J. Integr. Agric. 18(5):1159-1169. https://doi.org/10.1016/S2095-3119(18)62128-8.

Shi, Z.; Fang, W.; Yanyuan, Lu, Y. and Jia, D. 2018. “Combination of chitosan and salicylic acid to control postharvest green mold caused by Penicillium digitatum in grapefruit fruit.” Scientia Horticulturae. 233:54-60. https://doi.org/10.1016/j.scienta.2018.01.039.

Tovar, B.; García, H. S. y Mata, M. 2001. Physiology of precut mango. i. acc and acc oxidase activity of slices subjected to osmotic dehydration. Food Res. Int. 34(2-3):207-15. https://doi.org/10.1016/S0963-9969(00)00154-X.

Vieira, J. M; Flores-López, M. L.; Jasso, D.; Rodríguez, D.; Sousa, M. C.; Vicente, A. A. and Martins, J. T. 2016. Effect of chitosan Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol. Technol. 16:88-97. https://doi.org/10.1016/j.postharvbio.2016.01.011.

Zhao, L.; Lan, C.; Tang, X.; Li, B.; Zhang, X.; Gu, X. and Zhang, H. 2022. Efficacy of Debaryomyce hansenii in the biocontrol for postharvest soft rot of strawberry and investigation of the physiological mechanisms involved. Biol. Control. 174:1-8. https://doi.org/10.1016/j.biocontrol.2022.105011.

Xu, F.; Wang, S.; Xu, J.; Liu, S. and Li, G. 2016. Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest biology and technology. 117:125-131. https://doi.org/10.1016/j.postharvbio.2016.01.012.

Publicado

2024-08-09

Cómo citar

Ramos-Bell, Surelys, Gerónimo Diaz-Cayetano, Luis Guillermo Hernández-Montiel, Rita María Velázquez-Estrada, Efigenia Montalvo-González, y Porfirio Gutiérrez-Martínez. 2024. «Conservación fisicoquímica De arándanos Tratados Con Quitosano Y ácido salicílico En Poscosecha». Revista Mexicana De Ciencias Agrícolas 15 (5). México, ME:e3391. https://doi.org/10.29312/remexca.v15i5.3391.

Número

Sección

Artículos

Artículos más leídos del mismo autor/a