Production of tomato with application of salicylic acid and seaweed under shade cloth

Authors

  • Edgar Nava-Alejo Maestría Interinstitucional en Agricultura Protegida-Facultad de Ciencias Agropecuarias-Universidad Michoacana de San Nicolás de Hidalgo. Apatzingán, México. CP. 60670
  • Patricio Apáez-Barrios Maestría Interinstitucional en Agricultura Protegida-Facultad de Ciencias Agropecuarias-Universidad Michoacana de San Nicolás de Hidalgo. Apatzingán, México. CP. 60670
  • Juan Carlos Álvarez-Hernández Campo Experimental Valle Apatzingán-INIFAP. Carretera Apatzingán-Cuatro Caminos km 17.5, Antúnez, Parácuaro, Michoacán, México. CP. 60781
  • José Francisco Díaz-Nájera Departamento de Fitotecnia-Colegio Superior Agropecuario del Estado de Guerrero (CEP-CSAEGRO). Cocula, Guerrero, México
  • Yurixhi Atenea Raya-Montaño Facultad de Agrobiología ‘Presidente Juárez’-Universidad Michoacana de San Nicolas de Hidalgo. Uruapan, México. CP. 60190
  • Maricela Apáez-Barrios Maestría Interinstitucional en Agricultura Protegida-Facultad de Ciencias Agropecuarias-Universidad Michoacana de San Nicolás de Hidalgo. Apatzingán, México. CP. 60670

DOI:

https://doi.org/10.29312/remexca.v16i2.3538

Keywords:

Biostimulants, Lycopene, Fruit yield

Abstract

Tomato (Solanum lycopersicum L.) is one of the most important vegetables for human consumption due to its contribution of vitamins, minerals, and antioxidants; therefore, it is necessary to look for environmentally friendly management alternatives. Seaweed and acetylsalhasic acid have been shown to improve plant nutrition, promote growth, and confer resistance against biotic and abiotic factors. The objective of the study was to determine the effect of the application of seaweed and acetylsalicylic acid on the production and quality of tomatoes under shade cloth in 2022. Tomato plants received foliar application of extracts of Ascophyllum nodosum, Ecklonia maxima, Sargassum vulgare, and acetylsalicylic acid, alone and in combination: Ascophyllum nodosum + acetylsalicylic acid, Ecklonia maxima + acetylsalicylic acid, Sargassum vulgare + acetylsalicylic acid, and the control. It was found that the treatments did not modify the fruit yield or yield components. The lycopene content increased in the fruits with seaweeds and with Sargassum vulgare + acetylsalicylic acid and the firmest fruits were recorded with Ascophyllum nodosum, so the application of seaweeds and acetylsalicylic acid, under the conditions in which the plants were grown, despite not improving the production variables, increased the lycopene content and firmness with some treatments, parameters that improve the quality of the fruit as a functional food in human health and that make it better withstand transport and marketing.

Downloads

Download data is not yet available.

References

Ahmed, M.; Ullah, H.; Attia, A.; Tisarum, R.; Chaum, S. and Datta, A. 2023. Interactive effects of Ascophyllum nodosum seaweed extract and silicon on growth, fruit yield and quality and water productivity of tomato under water stress. Silicon. 15(1):2263-2278. Doi.org/10.1007/s12633-022-02180-x.

Ali, O.; Ramsubhag, A. and Jayaraman, J. 2019. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE. 14(5):e0216710. Doi.org/10.1371/journal.pone.0216710.

Chaves-Barrantes, N. F. y Gutiérrez-Soto, M. V. 2017. Respuestas al estrés por calor en los cultivos. II. Tolerancia y tratamiento agronómico. Agronomía Mesoamericana. 28(1):255-271.

Fernández, C.; Pitre, A.; Llobregat, M. J. y Rondón, Y. 2007. Evaluación del contenido de licopeno en pastas de tomate comerciales. Inf. Tecnol. 18(3):31-38. Doi.org/10.4067/S0718-07642007000300005.

Florido-Bacallao, M. y Álvarez-Gil, M. 2015. Aspectos relacionados con el estrés de calor en tomate (Solanum lycopersicum L.). Cult. Trop. 36(1):77-95.

García, E. A. 2004. Modificación al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México (UNAM). México, DF. 90 p.

Gorni, P. H.; Silva, C. B. and Pereira, A. A. 2021. Exogenous salicylic acid and ferulic acid improve growth, phenolic and carotenoid content in tomato. Advances in Horticultural Science. 35(4):335-341. Doi.org/10.36253/ahsc-8295.

Hortalizas A. 2017. Tomato primus. 1 p. http://www.semillasmexico.com/wp-content/uploads/2017/04/ primus-lf.pdf.

IPCC. 2019. Grupo Intergubernamental de expertos sobre el cambio climático. Calentamiento global de 1.5 °C. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/09/IPCC-Special-Report-1.5-SPM-es.pdf.

Khan, M. R. I.; Fatma, M.; Per, S. T.; Anjum, A. N. and Khan, A. N. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6(1):462-479. Doi.org/10.3389/fpls.2015.00462.

ONU. 2023. Organización de las Naciones Unidas. Población en crecimiento. Perspectivas de población mundial 2022 y tablero de la población Mundial. https://www.un.org/es/global-issues/population.

Rieu, I.; Twell, D. and Firon, N. 2017. Pollen development at high temperature: From acclimation to collapse. Plant Physiol. 173(4):1967-1976.

Santis, S. M.; Cabrera, D. M.; Benavides, M. A.; Sandoval, R. A.; Ortega, O. H. y Robledo, O. A. 2019. Rendimiento agronómico del jitomate suplementado con microelementos Fe, Cu y Zn. Revista Mexicana de Ciencias Agrícolas. 10(6):1379-1391.

Sariñana-Aldaco, O.; Sánchez-Chávez, O.; Troyo-Diéguez, E.; Tapia-Vargas, L. E.; Díaz-Pérez, J. C. and Preciado-Rangel, P. 2020. Foliar aspersion of salicylic acid improves nutraceutical quality and fruit yield in tomato. Agriculture. 10(10):482-492. Doi.org/10.3390/agriculture10100482.

SAS. 2019. Stastistics Analysis System. SAS 9.4 Language reference: concepts, Sixth Edition. Cary, NC: SAS Institute Inc. Cary, NC, USA.

Shahriari, F. M.; Bahram, A. A.; Hussein, N. S. and Arouiee, H. 2019. Studying the effects of foliar spraying of seaweed extract as a bio-stimulant on the increase on the yield and quality of tomato (Lycopersicon esculentum L.). World J. Environ. Biosc. 3(8):11-17.

Shinwari, A.; Ahmad, I. and Khan, I. 2018. Thermo tolerance in tomato: acetyl salicylic acid affects growth and yield of tomato (Solanum lycopersicum L.) under the agro-climatic condition of Islamabad, Pakistan. Advances in Agriculture and Environmental Science. 1(3):102-107.

Silva, A. A. R.; Lima, G. S.; Azevedo, C. A. V.; Veloso, L. L. S. A.; Lacerda, C. N.; Gheyi, H. R.; Pereira, W. E.; Silva, V. R. and Soares, L. A. A. 2022. Methods of application of salicylic acid as an attenuator of salt stress in cherry tomato. Braz. J. Biol. 82:e265069. Doi.org/10.1590/1519-6984.265069.

Steiner, A. A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil. 15(2):134-154. Doi.org/10.1007/BF01347224.

Sutharsan, S.; Nishanthi, S. and Srikrishnah, S. 2014. Effects of foliar application of seaweed (Sargassum crassifolium) liquid extract on the performance of Lycopersicon esculentum Mill. In: sandy Regosol of Batticaloa district Sri Lanka. Am. Eurasian J. Agric. Envir. Sci. 14(12):1386-1396. Doi: 1386-1396. 10.5829/idosi.aejaes.2014.14.12.1828.

Vargas-Martínez, G.; Betancourt-Galindo, R.; Juárez-Maldonado, A.; Sánchez-Vega, M.; Sandoval-Rangel, A. y Méndez-López, A. 2023. Impacto de NPsZnO y microorganismos rizosfericos en el crecimiento y biomasa del tomate. Trop. Subtrop Agroecosystems. 26(1):010. Doi.org/10.56369/tsaes.4332.

Vázquez-Díaz, D. A.; Salas-Pérez, L.; Preciado-Rangel, P.; Segura-Castruita, M. Á.; González-Fuentes, J. A. y Valenzuela-García, J. R. 2016. Efecto del ácido salicílico en la producción y calidad nutracéutica de frutos de tomate. Revista Mexicana de Ciencias Agrícolas. 1(17):3405-3414.

Wahid, A.; Gelani, S.; Ashraf, M. and Foolad, M. R. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61(3):199-223. Doi.org/10.1016/j.envexpbot.2007.05.011.

Zahirul, I. M.; Akter, M. M.; Choi, K. Y.; Pill, B. J. and Kang, H. M. 2018. Salicylic acid in nutrient solution influences the fruit quality and shelf life of cherry tomato grown in hydroponics. Sains Malay. 47(3):537-542. Doi.org/10.17576/jsm-2018-4703-14.

Zhang, Z.; Lan, M.; Han, X.; Wu, J. and Wang-Pruski, G. 2020. Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. J. Plant Growth Regul. 39(1):133-146. Doi.org/10.1007/s00344-019-09969-y.

Zhao, Z.; Qin, X.; Wang, E.; Carberry, P.; Zhang, Y.; Zhou, S.; Zhang, X.; Hu, C. and Wang, Z. 2015. Modelling to increase the ecoefficiency of a wheat-maize double cropping system. Agriculture, Ecosystems and Environment. 210(1):36-46. Doi.org/10.1016/j.agee.2015.05.005.

Published

2025-04-14

How to Cite

Nava-Alejo, Edgar, Patricio Apáez-Barrios, Juan Carlos Álvarez-Hernández, José Francisco Díaz-Nájera, Yurixhi Atenea Raya-Montaño, and Maricela Apáez-Barrios. 2025. “Production of Tomato With Application of Salicylic Acid and Seaweed under Shade Cloth”. Revista Mexicana De Ciencias Agrícolas 16 (2). México, ME:e3538. https://doi.org/10.29312/remexca.v16i2.3538.

Issue

Section

Articles

Most read articles by the same author(s)