El silicio como mitigador a salinidad en las variables fisiológicas de germinación de tres variedades de Solanum lycopersicum

Autores/as

  • Emmanuel Alexander Enríquez-Acosta Maestría en Innovación y Producción Orgánica en Ambientes Áridos y Costeros-Universidad Autónoma de Baja California Sur. Carretera al Sur km 5.5, La Paz, Baja California Sur, México. AP. 19-B. CP. 23080
  • Francisco Higinio Ruiz-Espinoza Maestría en Innovación y Producción Orgánica en Ambientes Áridos y Costeros-Universidad Autónoma de Baja California Sur. Carretera al Sur km 5.5, La Paz, Baja California Sur, México. AP. 19-B. CP. 23080.
  • Fernando de Jesús Carballo-Méndez Universidad Autónoma de Nuevo León-Facultad de Agronomía. Av. Francisco Villa s/n, Ex Hacienda el Canadá, General Escobedo, Nuevo León, México. CP. 66450
  • Félix Alfredo Beltrán-Morales Maestría en Innovación y Producción Orgánica en Ambientes Áridos y Costeros-Universidad Autónoma de Baja California Sur. Carretera al Sur km 5.5, La Paz, Baja California Sur, México. AP. 19-B. CP. 23080
  • Cirilo Vázquez-Vázquez Universidad Autónoma de Nuevo León-Facultad de Agronomía. Av. Francisco Villa s/n, Ex Hacienda el Canadá, General Escobedo, Nuevo León, México. CP. 66450
  • Héctor Donaciano García-Sánchez Universidad Autónoma de Nuevo León-Facultad de Agronomía. Av. Francisco Villa s/n, Ex Hacienda el Canadá, General Escobedo, Nuevo León, México. CP. 66450

DOI:

https://doi.org/10.29312/remexca.v14i1.3385

Palabras clave:

Solanum lycopersicum L., cloruro de sodio, dióxido de silicio

Resumen

En la actualidad, los suelos agrícolas están afectados por salinidad debido al uso excesivo de fertilizantes y la mala calidad del agua para el riego agrícola. En la actualidad, los productos a base de silicio (Si) se están aplicando para ayudar a la sostenibilidad de la agricultura; además, el Si beneficia a las plantas a tener mayor tolerancia a plagas y enfermedades, ayuda contra la toxicidad por metales pesados y actúa contra el estrés hídrico y salino. Por lo tanto, el objetivo del estudio fue evaluar el efecto del silicio como atenuante de la salinidad en la germinación de semillas y crecimiento inicial de plántulas de tomate. El trabajo se realizó en el laboratorio de Germoplasma de la Universidad Autónoma Baja California Sur. Las variedades de tomate seleccionadas fueron: cherry (Solanum lycopersicum var. Cerasiforme), bola (Solanum lycopersicum var. Floradade) y saladette (Solanum lycopersicum var. Río Grande). El diseño experimental fue completamente al azar con arreglo factorial de 2 x 3, donde el factor A fueron las concentraciones salinas de cloruro de sodio (NaCl) (0, 25, 50 mM) y el factor B, las diluciones de silicio (0, 1, 2 mM). Cada tratamiento incluyó cuatro repeticiones de 25 semillas cada una. Los cultivares de tomate mostraron efectos diferentes respecto a la salinidad. El cultivar cherry mostró disminuciones en sus variables germinativas al incrementarse la salinidad, lo que indica que los cultivares Floradade y Río Grande son más tolerantes a salinidad. En este sentido el silicio presentó un efecto protector en la interacción (NaCl + Si), mostrando efectos positivos al incrementar las variables evaluadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmad, P. S.; Ahanger, M. A.; Alam, P.; Alyemeni, M. N.; Wijaya, L.; Ali, S. and Ashraf, M. 2019. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean Vigna radiata (L.) Wilczek. Through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38(1):70-82. Doi:10.1007/s00344-018-9810-2.

Ahmed, B.; Zaidi, A.; Khan, M. S.; Rizvi, A.; Saif, S. and Shahid, M. 2017. Perspectives of plant growth promoting Rhizobacteria in growth enhancement and sustainable production of tomato. In: Zaidi, A., Khan, M. Ed. Microbial strategies for vegetable production. Springer, Cham. 125-149 pp. https://doi.org/10.1007/978-3-319-54401-4-6.

Asgari, F.; Majd, A.; Jonoubi, P. and Najafi, F. 2018. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol. Biochem. 127(1):152-160. https://doi.org/10.1016/j.plaphy.2018.03.021.

Batista, S. D.; Murillo, A. B.; Nieto, G. A.; Alcaraz, M. L.; Troyo, D. E.; Hernández, M. L. y Ojeda, S. C. 2017. Mitigación de NaCl por efecto de un bioestimulante en la germinación de Ocimum basilicum L. Terra Latinoam. 35(4):309-320. https://www.scielo.org.mx/pdf/ tl/v35n4/2395-8030-tl-35-04-00309.pdf.

Briones, V. O. L.; Búrquez, M. J. A.; Martínez, Y. A.; Pavón, H. N. P. and Perroni, V. Y. 2018. Biomass and productivity in Mexican arid lands. Madera y Bosques. 24(1):1-19. Doi: 10.21829/myb.2018.2401898.

Camejo, L. D. y Torres, E. W. 2000. La salinidad y su efecto en los estados iniciales del desarrollo de los cultivares de tomate (Lycopersicum esculemtum Mill). Cultivos Tropicales. 21(2):23-26. https://www.redalyc.org/pdf/1932/193215024004.pdf.

Can, C. A.; Cruz, C. E.; Ortega, E. H.; Sánchez, B. E.; Madueño, M. A.; Bojórquez, S. J. y Mancilla, V. O. 2017. Respuesta de Phaseolus vulgaris a la salinidad generada por NaCl, Na2SO4 y NaHCO3. Rev. Mex. Cienc. Agríc. 8(6):1287-1300. http://www.redalyc.org/articulo. oa?id=263153306005.

Carballo, M. F. J.; Olivares, S. E.; Bolivar, D. M.; Antonio, B. A.; Vázquez, B. M. E. and Nino, M. G. 2019. Effect of silicon on germination of moringa Oleifera Lam. In different types of salts. Fresenius Environmental Bulletin. 28(11):8823-8830. file:///C:/Users/sears/Down loads/EffectofSilicononGerminationofMoringaoleiferaLam.inDifferentTypesofSalts.pdf.

Chourasiya, V. K.; Nehra, A.; Shukla, P. S.; Singh, K. P y Singh, P. S. 2021. Impacto de la nanosílice mesoporosa (SiO2) en la germinación de semillas y el crecimiento de plántulas de semillas de trigo, guisantes y mostaza. Diario de nanociencia y nanotecnología. 21(6):3566-3572. Doi: https://doi.org/10.1166/jnn.2021.19013.

Cuartero, J. M.; Bolarín, M. C.; Asíns, M. J. and Moreno, V. V. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot. 57(5):1045-1058. Doi: https://doi.org/10.1093/jxb/erj102.

Doğan, M.; Avu, A.; Can, E. N. and Aktan, F. A. 2008. Farklı domates tohumlarının çimlenmesi üzerine tuz stresinin etkisi. SDÜ Fen Edebiyat Fakültesi Fen Dergisi. 3(2):174-182. https://dergipark.org.tr/tr/download/article-file/116274.

Durukan, D. H. and Demirbas, A. A. 2018. The effects of different salt doses on yield and nutrient uptake of tomato plant. Sci. Pap. Ser. A Agron. 61(1):71-76. http://agronomyjournal. usamv.ro/pdf/2018/issue-1/Art10.pdf.

Eitel, C. C. 2021. Efecto del estrés salino en la producción y calidad de semillas de tomate. Tesis para optar al grado de Magister en Fisiología y producción Vegetal. 1-47 pp. https://bibliotecadigital.oducal.com/Record/ir-11534-52676.

Emamverdian, A.; Ding, Y.; Xie, Y. y Sangari, Y. 2018. Mecanismos de silicio para mejorar el estrés por metales pesados en plantas. Biomed. Res. Int. 1(1):1-10. Doi:10.1155/2018/ 8492898. FIRA. 2019. Fideicomisos Instituidos en Relación con la Agricultura (FIRA). Panorama Agroalimentario. Dirección de Investigación y evaluación económica y sectorial. https://www.inforural.com.mx/wp-content/uploads/2019/06/Panorama-Agroalimentario-Tomate-rojo-2019.pdf.

Gong, H. J.; Randall, D. P. y Flores, T. J. 2006. La deposición de silicio en la raíz reduce la absorción de sodio en las plántulas de arroz (Oryza sativa L.) al reducir el flujo de derivación. Planta, Célula y Medio Ambiente. 29(10):1970-1979. Doi:10.1111/j.1365-3040.2006.01572.

González, G. P.; Suárez, N. T. and Marín, J. O. 2020. Effect of salinity and seed salt priming on the physiology of adult plants of Solanum Lycopersicum cv. ‘Río Grande’. Braz. J. Bot. 43(4):775-787. Doi: https://doi.org/10.1007/s40415-020-00636-1.

Haghighi, M.; Afifipour, Z. and Mozafarian, M. 2012. The effect of N-Si on tomato seed germination under salinity levels. J. Biol. Environ. SCI. 6(16):87-90. https://uludag.edu.tr/ dosyalar/jbes/16/mak12.pdf.

Haghighi, M. and Pessarakli, M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161(1):111-117. https://doi.org/10.1016/j.scienta.2013.06.034.

Infoagro. 2017. El cultivo del tomate. http://www.infoagro.com/hortalizas/tomate.htm.

Khan, A. M.; Khan, A. L.; Imran, M. A.; Asaf, S. A.; Kim, Y. H.; Bilal, S.; Numan, M.; Al-Harrasi, A.; Al-Rawahi, A. and Lee, I. J. 2020. Silicon induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC Plant Biol. 20(1):248-267. https://doi.org/10.1186/ s12870-020-02456-7.

Loudari, A.; Benadis, C.; Naciri, R.; Soulaimani, A.; Zeroual, Y.; Gharous, M.; Kalaji, H. M. and Oukarroum, A. 2020. Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J. Plant Interac. 15(1):398-405. Doi:10.1080/17429145.2020.1841842.

Mazón, S. M.; Ojeda, S. C.; García, B. M.; Batista, S. D. y Abasolo, P. F. 2020. La Homeopatía incrementa la tolerancia al estrés por NaCl en plantas de frijol común (Phaseolus vulgaris L.) variedad Quivicán. Terra Latinoam. 38(1):37-51. Doi: doi.org/10.28940/terra. v38i1.584.

Mushinskiy, A. A.; Aminovа, E. V. y Korotkova, A. M. 2018. Evaluación de la tolerancia de los tubérculos Solanum tuberosum a las nanopartículas de sílice. Environ. Sci. Pollut. Res. 25(34):34559-34569. https://doi.org/10.1007/s11356-018-3268-4.

Ruiz, E. F.; Villalpando, G. R. L.; Murillo, B. A.; Beltrán, M. F. A. y Hernández, M. L. G. 2014. Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra Latinoam. 32(4):311-323. https://www.scielo. org.mx/pdf/tl/v32n4/2395-8030-tl-32-04-00311.pdf.

Sun, Y.; Xu, J.; Miao, X.; Lin, X.; Liu, W. and Ren, H. 2021. Efects of exogenous silicon on maize seed germination and seedling growth. Scientifc Reports. 11(1):1-13. Doi: https://doi.org/10.1038/s41598-020-79723-y.

Torabi, F.; Majd, A. and Enteshari, S. 2012. Effect of exogenous silicon on germination and seedling establishment in Borago officinalis L. J. Medicinal Plants Res. 6(10):1896-1901. https://academicjournals.org/journal/JMPR/article-full-text-pdf/4A0962632431.

Turhan, A. N.; Kuşçu, H. D. and Şeniz, K. V. 2011. Effects of different salt concentrations (NaCl) on germination of some spinach cultivars. J. Agricultural Faculty of Uludag University. 25(1):65-77. https://dergipark.org.tr/tr/download/article-file/154131.

Vítámvás, P. V.; Kosová, K. I. and Prášil, T. I. 2007. Proteome analysis in plant stress research: a review. Czech J. Genet. Plant Breed. 43(1):1-6. Doi: https://doi.org/10.17221/1903-CJGPB.

Wang, S.; Liu, P.; Chen, D.; Yin, L.; Li, H. y Deng, X. 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front. Plant Sci. 6(1):1-10. https://doi.org/10.3389/fpls.2015.00759.

Publicado

2023-01-30

Cómo citar

Enríquez-Acosta, Emmanuel Alexander, Francisco Higinio Ruiz-Espinoza, Fernando de Jesús Carballo-Méndez, Félix Alfredo Beltrán-Morales, Cirilo Vázquez-Vázquez, y Héctor Donaciano García-Sánchez. 2023. «El Silicio Como Mitigador a Salinidad En Las Variables fisiológicas De germinación De Tres Variedades De Solanum Lycopersicum». Revista Mexicana De Ciencias Agrícolas 14 (1). México, ME:85-96. https://doi.org/10.29312/remexca.v14i1.3385.

Número

Sección

Artículos

Artículos más leídos del mismo autor/a