El silicio como mitigador a salinidad en las variables fisiológicas de germinación de tres variedades de Solanum lycopersicum
DOI:
https://doi.org/10.29312/remexca.v14i1.3385Palabras clave:
Solanum lycopersicum L., cloruro de sodio, dióxido de silicioResumen
En la actualidad, los suelos agrícolas están afectados por salinidad debido al uso excesivo de fertilizantes y la mala calidad del agua para el riego agrícola. En la actualidad, los productos a base de silicio (Si) se están aplicando para ayudar a la sostenibilidad de la agricultura; además, el Si beneficia a las plantas a tener mayor tolerancia a plagas y enfermedades, ayuda contra la toxicidad por metales pesados y actúa contra el estrés hídrico y salino. Por lo tanto, el objetivo del estudio fue evaluar el efecto del silicio como atenuante de la salinidad en la germinación de semillas y crecimiento inicial de plántulas de tomate. El trabajo se realizó en el laboratorio de Germoplasma de la Universidad Autónoma Baja California Sur. Las variedades de tomate seleccionadas fueron: cherry (Solanum lycopersicum var. Cerasiforme), bola (Solanum lycopersicum var. Floradade) y saladette (Solanum lycopersicum var. Río Grande). El diseño experimental fue completamente al azar con arreglo factorial de 2 x 3, donde el factor A fueron las concentraciones salinas de cloruro de sodio (NaCl) (0, 25, 50 mM) y el factor B, las diluciones de silicio (0, 1, 2 mM). Cada tratamiento incluyó cuatro repeticiones de 25 semillas cada una. Los cultivares de tomate mostraron efectos diferentes respecto a la salinidad. El cultivar cherry mostró disminuciones en sus variables germinativas al incrementarse la salinidad, lo que indica que los cultivares Floradade y Río Grande son más tolerantes a salinidad. En este sentido el silicio presentó un efecto protector en la interacción (NaCl + Si), mostrando efectos positivos al incrementar las variables evaluadas.
Descargas
Citas
Ahmad, P. S.; Ahanger, M. A.; Alam, P.; Alyemeni, M. N.; Wijaya, L.; Ali, S. and Ashraf, M. 2019. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean Vigna radiata (L.) Wilczek. Through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38(1):70-82. Doi:10.1007/s00344-018-9810-2.
Ahmed, B.; Zaidi, A.; Khan, M. S.; Rizvi, A.; Saif, S. and Shahid, M. 2017. Perspectives of plant growth promoting Rhizobacteria in growth enhancement and sustainable production of tomato. In: Zaidi, A., Khan, M. Ed. Microbial strategies for vegetable production. Springer, Cham. 125-149 pp. https://doi.org/10.1007/978-3-319-54401-4-6.
Asgari, F.; Majd, A.; Jonoubi, P. and Najafi, F. 2018. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol. Biochem. 127(1):152-160. https://doi.org/10.1016/j.plaphy.2018.03.021.
Batista, S. D.; Murillo, A. B.; Nieto, G. A.; Alcaraz, M. L.; Troyo, D. E.; Hernández, M. L. y Ojeda, S. C. 2017. Mitigación de NaCl por efecto de un bioestimulante en la germinación de Ocimum basilicum L. Terra Latinoam. 35(4):309-320. https://www.scielo.org.mx/pdf/ tl/v35n4/2395-8030-tl-35-04-00309.pdf.
Briones, V. O. L.; Búrquez, M. J. A.; Martínez, Y. A.; Pavón, H. N. P. and Perroni, V. Y. 2018. Biomass and productivity in Mexican arid lands. Madera y Bosques. 24(1):1-19. Doi: 10.21829/myb.2018.2401898.
Camejo, L. D. y Torres, E. W. 2000. La salinidad y su efecto en los estados iniciales del desarrollo de los cultivares de tomate (Lycopersicum esculemtum Mill). Cultivos Tropicales. 21(2):23-26. https://www.redalyc.org/pdf/1932/193215024004.pdf.
Can, C. A.; Cruz, C. E.; Ortega, E. H.; Sánchez, B. E.; Madueño, M. A.; Bojórquez, S. J. y Mancilla, V. O. 2017. Respuesta de Phaseolus vulgaris a la salinidad generada por NaCl, Na2SO4 y NaHCO3. Rev. Mex. Cienc. Agríc. 8(6):1287-1300. http://www.redalyc.org/articulo. oa?id=263153306005.
Carballo, M. F. J.; Olivares, S. E.; Bolivar, D. M.; Antonio, B. A.; Vázquez, B. M. E. and Nino, M. G. 2019. Effect of silicon on germination of moringa Oleifera Lam. In different types of salts. Fresenius Environmental Bulletin. 28(11):8823-8830. file:///C:/Users/sears/Down loads/EffectofSilicononGerminationofMoringaoleiferaLam.inDifferentTypesofSalts.pdf.
Chourasiya, V. K.; Nehra, A.; Shukla, P. S.; Singh, K. P y Singh, P. S. 2021. Impacto de la nanosílice mesoporosa (SiO2) en la germinación de semillas y el crecimiento de plántulas de semillas de trigo, guisantes y mostaza. Diario de nanociencia y nanotecnología. 21(6):3566-3572. Doi: https://doi.org/10.1166/jnn.2021.19013.
Cuartero, J. M.; Bolarín, M. C.; Asíns, M. J. and Moreno, V. V. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot. 57(5):1045-1058. Doi: https://doi.org/10.1093/jxb/erj102.
Doğan, M.; Avu, A.; Can, E. N. and Aktan, F. A. 2008. Farklı domates tohumlarının çimlenmesi üzerine tuz stresinin etkisi. SDÜ Fen Edebiyat Fakültesi Fen Dergisi. 3(2):174-182. https://dergipark.org.tr/tr/download/article-file/116274.
Durukan, D. H. and Demirbas, A. A. 2018. The effects of different salt doses on yield and nutrient uptake of tomato plant. Sci. Pap. Ser. A Agron. 61(1):71-76. http://agronomyjournal. usamv.ro/pdf/2018/issue-1/Art10.pdf.
Eitel, C. C. 2021. Efecto del estrés salino en la producción y calidad de semillas de tomate. Tesis para optar al grado de Magister en Fisiología y producción Vegetal. 1-47 pp. https://bibliotecadigital.oducal.com/Record/ir-11534-52676.
Emamverdian, A.; Ding, Y.; Xie, Y. y Sangari, Y. 2018. Mecanismos de silicio para mejorar el estrés por metales pesados en plantas. Biomed. Res. Int. 1(1):1-10. Doi:10.1155/2018/ 8492898. FIRA. 2019. Fideicomisos Instituidos en Relación con la Agricultura (FIRA). Panorama Agroalimentario. Dirección de Investigación y evaluación económica y sectorial. https://www.inforural.com.mx/wp-content/uploads/2019/06/Panorama-Agroalimentario-Tomate-rojo-2019.pdf.
Gong, H. J.; Randall, D. P. y Flores, T. J. 2006. La deposición de silicio en la raíz reduce la absorción de sodio en las plántulas de arroz (Oryza sativa L.) al reducir el flujo de derivación. Planta, Célula y Medio Ambiente. 29(10):1970-1979. Doi:10.1111/j.1365-3040.2006.01572.
González, G. P.; Suárez, N. T. and Marín, J. O. 2020. Effect of salinity and seed salt priming on the physiology of adult plants of Solanum Lycopersicum cv. ‘Río Grande’. Braz. J. Bot. 43(4):775-787. Doi: https://doi.org/10.1007/s40415-020-00636-1.
Haghighi, M.; Afifipour, Z. and Mozafarian, M. 2012. The effect of N-Si on tomato seed germination under salinity levels. J. Biol. Environ. SCI. 6(16):87-90. https://uludag.edu.tr/ dosyalar/jbes/16/mak12.pdf.
Haghighi, M. and Pessarakli, M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161(1):111-117. https://doi.org/10.1016/j.scienta.2013.06.034.
Infoagro. 2017. El cultivo del tomate. http://www.infoagro.com/hortalizas/tomate.htm.
Khan, A. M.; Khan, A. L.; Imran, M. A.; Asaf, S. A.; Kim, Y. H.; Bilal, S.; Numan, M.; Al-Harrasi, A.; Al-Rawahi, A. and Lee, I. J. 2020. Silicon induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC Plant Biol. 20(1):248-267. https://doi.org/10.1186/ s12870-020-02456-7.
Loudari, A.; Benadis, C.; Naciri, R.; Soulaimani, A.; Zeroual, Y.; Gharous, M.; Kalaji, H. M. and Oukarroum, A. 2020. Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J. Plant Interac. 15(1):398-405. Doi:10.1080/17429145.2020.1841842.
Mazón, S. M.; Ojeda, S. C.; García, B. M.; Batista, S. D. y Abasolo, P. F. 2020. La Homeopatía incrementa la tolerancia al estrés por NaCl en plantas de frijol común (Phaseolus vulgaris L.) variedad Quivicán. Terra Latinoam. 38(1):37-51. Doi: doi.org/10.28940/terra. v38i1.584.
Mushinskiy, A. A.; Aminovа, E. V. y Korotkova, A. M. 2018. Evaluación de la tolerancia de los tubérculos Solanum tuberosum a las nanopartículas de sílice. Environ. Sci. Pollut. Res. 25(34):34559-34569. https://doi.org/10.1007/s11356-018-3268-4.
Ruiz, E. F.; Villalpando, G. R. L.; Murillo, B. A.; Beltrán, M. F. A. y Hernández, M. L. G. 2014. Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra Latinoam. 32(4):311-323. https://www.scielo. org.mx/pdf/tl/v32n4/2395-8030-tl-32-04-00311.pdf.
Sun, Y.; Xu, J.; Miao, X.; Lin, X.; Liu, W. and Ren, H. 2021. Efects of exogenous silicon on maize seed germination and seedling growth. Scientifc Reports. 11(1):1-13. Doi: https://doi.org/10.1038/s41598-020-79723-y.
Torabi, F.; Majd, A. and Enteshari, S. 2012. Effect of exogenous silicon on germination and seedling establishment in Borago officinalis L. J. Medicinal Plants Res. 6(10):1896-1901. https://academicjournals.org/journal/JMPR/article-full-text-pdf/4A0962632431.
Turhan, A. N.; Kuşçu, H. D. and Şeniz, K. V. 2011. Effects of different salt concentrations (NaCl) on germination of some spinach cultivars. J. Agricultural Faculty of Uludag University. 25(1):65-77. https://dergipark.org.tr/tr/download/article-file/154131.
Vítámvás, P. V.; Kosová, K. I. and Prášil, T. I. 2007. Proteome analysis in plant stress research: a review. Czech J. Genet. Plant Breed. 43(1):1-6. Doi: https://doi.org/10.17221/1903-CJGPB.
Wang, S.; Liu, P.; Chen, D.; Yin, L.; Li, H. y Deng, X. 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front. Plant Sci. 6(1):1-10. https://doi.org/10.3389/fpls.2015.00759.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista Mexicana de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.