Silicon as a salinity mitigator in the physiological variables of germination of three varieties of Solanum lycopersicum

Authors

  • Emmanuel Alexander Enríquez-Acosta Maestría en Innovación y Producción Orgánica en Ambientes Áridos y Costeros-Universidad Autónoma de Baja California Sur. Carretera al Sur km 5.5, La Paz, Baja California Sur, México. AP. 19-B. CP. 23080
  • Francisco Higinio Ruiz-Espinoza Maestría en Innovación y Producción Orgánica en Ambientes Áridos y Costeros-Universidad Autónoma de Baja California Sur. Carretera al Sur km 5.5, La Paz, Baja California Sur, México. AP. 19-B. CP. 23080.
  • Fernando de Jesús Carballo-Méndez Universidad Autónoma de Nuevo León-Facultad de Agronomía. Av. Francisco Villa s/n, Ex Hacienda el Canadá, General Escobedo, Nuevo León, México. CP. 66450
  • Félix Alfredo Beltrán-Morales Maestría en Innovación y Producción Orgánica en Ambientes Áridos y Costeros-Universidad Autónoma de Baja California Sur. Carretera al Sur km 5.5, La Paz, Baja California Sur, México. AP. 19-B. CP. 23080
  • Cirilo Vázquez-Vázquez Universidad Autónoma de Nuevo León-Facultad de Agronomía. Av. Francisco Villa s/n, Ex Hacienda el Canadá, General Escobedo, Nuevo León, México. CP. 66450
  • Héctor Donaciano García-Sánchez Universidad Autónoma de Nuevo León-Facultad de Agronomía. Av. Francisco Villa s/n, Ex Hacienda el Canadá, General Escobedo, Nuevo León, México. CP. 66450

DOI:

https://doi.org/10.29312/remexca.v14i1.3385

Keywords:

Solanum lycopersicum L., silicon dioxide, sodium chloride

Abstract

At present, agricultural soils are affected by salinity due to the excessive use of synthetic fertilizers and poor quality of the water for agricultural irrigation. Currently, products based on silicon (Si) are being applied to help the sustainability of agriculture, in addition, Si benefits plants to have greater tolerance to pests and diseases, helps against heavy metal toxicity and acts against water and salt stress. Therefore, the aim of the study was to evaluate the effect of silicon as a salinity mitigator on seed germination and initial growth of tomato seedlings. The work was carried out in the Germplasm laboratory of the Autonomous University of Baja California Sur, Mexico. The selected tomato varieties were cherry (Solanum lycopersicum var. Cerasiforme), beef (Solanum lycopersicum var. Floradade) and saladette (Solanum lycopersicum var. Río Grande). The experimental design was completely randomized with a 2 x 3 factorial arrangement, where factor A was saline concentrations (0, 25, 50 mM) of sodium chloride (NaCl) and factor B was silicon dilutions (0, 1, 2 mM). Each treatment included four repetitions of 25 seeds each. Tomato cultivars showed different effects regarding salinity. The cherry cultivar showed decreases in its germinative variables with increasing salinity, indicating that the Floradade and Río Grande cultivars are more tolerant to salinity. In this same sense, silicon presented a protective effect in the interaction (NaCl + Si), showing positive effects by increasing the variables evaluated.

Downloads

Download data is not yet available.

References

Ahmad, P. S.; Ahanger, M. A.; Alam, P.; Alyemeni, M. N.; Wijaya, L.; Ali, S. and Ashraf, M. 2019. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean Vigna radiata (L.) Wilczek. Through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38(1):70-82. Doi:10.1007/s00344-018-9810-2.

Ahmed, B.; Zaidi, A.; Khan, M. S.; Rizvi, A.; Saif, S. and Shahid, M. 2017. Perspectives of plant growth promoting Rhizobacteria in growth enhancement and sustainable production of tomato. In: Zaidi, A., Khan, M. Ed. Microbial strategies for vegetable production. Springer, Cham. 125-149 pp. https://doi.org/10.1007/978-3-319-54401-4-6.

Asgari, F.; Majd, A.; Jonoubi, P. and Najafi, F. 2018. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol. Biochem. 127(1):152-160. https://doi.org/10.1016/j.plaphy.2018.03.021.

Batista, S. D.; Murillo, A. B.; Nieto, G. A.; Alcaraz, M. L.; Troyo, D. E.; Hernández, M. L. y Ojeda, S. C. 2017. Mitigación de NaCl por efecto de un bioestimulante en la germinación de Ocimum basilicum L. Terra Latinoam. 35(4):309-320. https://www.scielo.org.mx/pdf/ tl/v35n4/2395-8030-tl-35-04-00309.pdf.

Briones, V. O. L.; Búrquez, M. J. A.; Martínez, Y. A.; Pavón, H. N. P. and Perroni, V. Y. 2018. Biomass and productivity in Mexican arid lands. Madera y Bosques. 24(1):1-19. Doi: 10.21829/myb.2018.2401898.

Camejo, L. D. y Torres, E. W. 2000. La salinidad y su efecto en los estados iniciales del desarrollo de los cultivares de tomate (Lycopersicum esculemtum Mill). Cultivos Tropicales. 21(2):23-26. https://www.redalyc.org/pdf/1932/193215024004.pdf.

Can, C. A.; Cruz, C. E.; Ortega, E. H.; Sánchez, B. E.; Madueño, M. A.; Bojórquez, S. J. y Mancilla, V. O. 2017. Respuesta de Phaseolus vulgaris a la salinidad generada por NaCl, Na2SO4 y NaHCO3. Rev. Mex. Cienc. Agríc. 8(6):1287-1300. http://www.redalyc.org/articulo. oa?id=263153306005.

Carballo, M. F. J.; Olivares, S. E.; Bolivar, D. M.; Antonio, B. A.; Vázquez, B. M. E. and Nino, M. G. 2019. Effect of silicon on germination of moringa Oleifera Lam. In different types of salts. Fresenius Environmental Bulletin. 28(11):8823-8830. file:///C:/Users/sears/Down loads/EffectofSilicononGerminationofMoringaoleiferaLam.inDifferentTypesofSalts.pdf.

Chourasiya, V. K.; Nehra, A.; Shukla, P. S.; Singh, K. P y Singh, P. S. 2021. Impacto de la nanosílice mesoporosa (SiO2) en la germinación de semillas y el crecimiento de plántulas de semillas de trigo, guisantes y mostaza. Diario de nanociencia y nanotecnología. 21(6):3566-3572. Doi: https://doi.org/10.1166/jnn.2021.19013.

Cuartero, J. M.; Bolarín, M. C.; Asíns, M. J. and Moreno, V. V. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot. 57(5):1045-1058. Doi: https://doi.org/10.1093/jxb/erj102.

Doğan, M.; Avu, A.; Can, E. N. and Aktan, F. A. 2008. Farklı domates tohumlarının çimlenmesi üzerine tuz stresinin etkisi. SDÜ Fen Edebiyat Fakültesi Fen Dergisi. 3(2):174-182. https://dergipark.org.tr/tr/download/article-file/116274.

Durukan, D. H. and Demirbas, A. A. 2018. The effects of different salt doses on yield and nutrient uptake of tomato plant. Sci. Pap. Ser. A Agron. 61(1):71-76. http://agronomyjournal. usamv.ro/pdf/2018/issue-1/Art10.pdf.

Eitel, C. C. 2021. Efecto del estrés salino en la producción y calidad de semillas de tomate. Tesis para optar al grado de Magister en Fisiología y producción Vegetal. 1-47 pp. https://bibliotecadigital.oducal.com/Record/ir-11534-52676.

Emamverdian, A.; Ding, Y.; Xie, Y. y Sangari, Y. 2018. Mecanismos de silicio para mejorar el estrés por metales pesados en plantas. Biomed. Res. Int. 1(1):1-10. Doi:10.1155/2018/ 8492898. FIRA. 2019. Fideicomisos Instituidos en Relación con la Agricultura (FIRA). Panorama Agroalimentario. Dirección de Investigación y evaluación económica y sectorial. https://www.inforural.com.mx/wp-content/uploads/2019/06/Panorama-Agroalimentario-Tomate-rojo-2019.pdf.

Gong, H. J.; Randall, D. P. y Flores, T. J. 2006. La deposición de silicio en la raíz reduce la absorción de sodio en las plántulas de arroz (Oryza sativa L.) al reducir el flujo de derivación. Planta, Célula y Medio Ambiente. 29(10):1970-1979. Doi:10.1111/j.1365-3040.2006.01572.

González, G. P.; Suárez, N. T. and Marín, J. O. 2020. Effect of salinity and seed salt priming on the physiology of adult plants of Solanum Lycopersicum cv. ‘Río Grande’. Braz. J. Bot. 43(4):775-787. Doi: https://doi.org/10.1007/s40415-020-00636-1.

Haghighi, M.; Afifipour, Z. and Mozafarian, M. 2012. The effect of N-Si on tomato seed germination under salinity levels. J. Biol. Environ. SCI. 6(16):87-90. https://uludag.edu.tr/ dosyalar/jbes/16/mak12.pdf.

Haghighi, M. and Pessarakli, M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161(1):111-117. https://doi.org/10.1016/j.scienta.2013.06.034.

Infoagro. 2017. El cultivo del tomate. http://www.infoagro.com/hortalizas/tomate.htm.

Khan, A. M.; Khan, A. L.; Imran, M. A.; Asaf, S. A.; Kim, Y. H.; Bilal, S.; Numan, M.; Al-Harrasi, A.; Al-Rawahi, A. and Lee, I. J. 2020. Silicon induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC Plant Biol. 20(1):248-267. https://doi.org/10.1186/ s12870-020-02456-7.

Loudari, A.; Benadis, C.; Naciri, R.; Soulaimani, A.; Zeroual, Y.; Gharous, M.; Kalaji, H. M. and Oukarroum, A. 2020. Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J. Plant Interac. 15(1):398-405. Doi:10.1080/17429145.2020.1841842.

Mazón, S. M.; Ojeda, S. C.; García, B. M.; Batista, S. D. y Abasolo, P. F. 2020. La Homeopatía incrementa la tolerancia al estrés por NaCl en plantas de frijol común (Phaseolus vulgaris L.) variedad Quivicán. Terra Latinoam. 38(1):37-51. Doi: doi.org/10.28940/terra. v38i1.584.

Mushinskiy, A. A.; Aminovа, E. V. y Korotkova, A. M. 2018. Evaluación de la tolerancia de los tubérculos Solanum tuberosum a las nanopartículas de sílice. Environ. Sci. Pollut. Res. 25(34):34559-34569. https://doi.org/10.1007/s11356-018-3268-4.

Ruiz, E. F.; Villalpando, G. R. L.; Murillo, B. A.; Beltrán, M. F. A. y Hernández, M. L. G. 2014. Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra Latinoam. 32(4):311-323. https://www.scielo. org.mx/pdf/tl/v32n4/2395-8030-tl-32-04-00311.pdf.

Sun, Y.; Xu, J.; Miao, X.; Lin, X.; Liu, W. and Ren, H. 2021. Efects of exogenous silicon on maize seed germination and seedling growth. Scientifc Reports. 11(1):1-13. Doi: https://doi.org/10.1038/s41598-020-79723-y.

Torabi, F.; Majd, A. and Enteshari, S. 2012. Effect of exogenous silicon on germination and seedling establishment in Borago officinalis L. J. Medicinal Plants Res. 6(10):1896-1901. https://academicjournals.org/journal/JMPR/article-full-text-pdf/4A0962632431.

Turhan, A. N.; Kuşçu, H. D. and Şeniz, K. V. 2011. Effects of different salt concentrations (NaCl) on germination of some spinach cultivars. J. Agricultural Faculty of Uludag University. 25(1):65-77. https://dergipark.org.tr/tr/download/article-file/154131.

Vítámvás, P. V.; Kosová, K. I. and Prášil, T. I. 2007. Proteome analysis in plant stress research: a review. Czech J. Genet. Plant Breed. 43(1):1-6. Doi: https://doi.org/10.17221/1903-CJGPB.

Wang, S.; Liu, P.; Chen, D.; Yin, L.; Li, H. y Deng, X. 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front. Plant Sci. 6(1):1-10. https://doi.org/10.3389/fpls.2015.00759.

Published

2023-01-30

How to Cite

Enríquez-Acosta, Emmanuel Alexander, Francisco Higinio Ruiz-Espinoza, Fernando de Jesús Carballo-Méndez, Félix Alfredo Beltrán-Morales, Cirilo Vázquez-Vázquez, and Héctor Donaciano García-Sánchez. 2023. “Silicon As a Salinity Mitigator in the Physiological Variables of Germination of Three Varieties of Solanum Lycopersicum”. Revista Mexicana De Ciencias Agrícolas 14 (1). México, ME:85-96. https://doi.org/10.29312/remexca.v14i1.3385.

Issue

Section

Articles

Most read articles by the same author(s)