Pseudomonas viridiflava pathogenicity in Agave inaequidens and inhibition with essential oils

Authors

  • Adelaida Stephany Hernández-Valencia Postgrado en Fitopatología-Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Texcoco, Estado de México. CP. 56230. Tel. 55 58045900
  • Daniel Leobardo Ochoa-Martínez Postgrado en Fitopatología-Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Texcoco, Estado de México. CP. 56230. Tel. 55 58045900
  • Anselmo Hernández-Pérez Campo Experimental Uruapan-INIFAP. Av. Latinoamericana 1101, Uruapan, Michoacán, México. CP. 60150. Tel. 452 5237392
  • Alejandro Martínez-Palacios Laboratorio de Biotecnología y Genética-Instituto de Investigaciones Agropecuarias y Forestales-Universidad Michoacana de San Nicolás de Hidalgo. Carretera Morelia-Zinapécuaro km 9.5, Tarímbaro Michoacán, México. CP. 58880. Tel. 443 3223500, ext. 5219
  • Luis Mario Tapia-Vargas Campo Experimental Uruapan-INIFAP. Av. Latinoamericana 1101, Uruapan, Michoacán, México. CP. 60150. Tel. 452 5237392

DOI:

https://doi.org/10.29312/remexca.v15i8.3841

Keywords:

Agave inaequidens, Agave mezcalero, Pseudomona viridiflava, biological control

Abstract

The bacterium Pseudomonas viridiflava (Burkholder, 1930) causes economic damage in beans (Phaseolus vulgaris L.); it has been shown that it can affect more than 50 hosts (Saygili et al., 2008), among which are alfalfa (Medicago sativa), apple tree [Malus pumila var. domestica (Borkh.) CK Schneid.] (Alimi et al., 2011), and broccoli (Brassica oleracea L.); however, in Origanum vulgare, there is no report of any damage on agave mezcalero (Agave inaequidens K.Koch), a species still little studied; this research was based on the evaluation of the effects of the bacterium Pseudomonas viridiflava in the process of imbibition in seeds of Agave inaequidens; on the other hand, the tolerance of the bacterium to the essential oils of cinnamon (Cinnamomum verum Blume), clove (Syzygium aromaticum L.), and oregano (Origanum heracleoticum Rchb.) was evaluated, as preliminary studies for the ecological, organic, agrochemical-free management strategy in crops affected by Pseudomonas viridiflava; it was found that the concentration of 25% of oregano and cloves oil was efficient in the development of the bacterium under in vitro conditions; in contrast, in the germination process based on the imbibition of the seed, there was no reduction in the percentage of germination or signs of damage due to the effect of the bacteria.

Downloads

Download data is not yet available.

References

Aksoy, H. M.; Ozturk, M. and Aktas, A. 2017. First report of Pseudomonas viridiflava causing cabbage bacterial leaf spot in Turkey. Journal of Plant Pathology. 99(3):799-818.

Alimi, M.; Rahimian, H.; Hassanzadeh, N.; Darzi, M. T.; Ahmadikhah, A.; Heydari, A. and Balestra, G. M. 2011. First detection of Pseudomonas viridiflava, the causal agent of blossom blight in apple by using specific designed primers. African Journal of Microbiology Research. 5(26):4708-4713.

Al-Karablieh, N.; Mutlak, I. and Al-Dokh, A. 2017. Isolation and identification of Pseudomonas viridiflava, the causal agent of fruit rotting of Cucumis sativus. Jordan Journal of Agricultural Sciences. 13(1):79-91. https:// doi.org/10.12816/0039717.

Arai, N. N. 2001. Procedimiento simplificado para la identificación de bacterias fitopatógenos. Guatemala. USAC-Facultad de agronomía. Voluntarios Japoneses en Cooperación Técnica con el Extranjero. 148-156 pp.

Bartoli, C.; Lamichhane, J. R.; Berge, O.; Varvaro, L. and Morris, C. E. 2015. Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. Molecular Plant Pathology. 16(8):860-869.

Beiki, F.; Busquets, A.; Gomila, M.; Rahimian, H.; Lalucat, J. and García, V. E. 2016. The new Pseudomonas spp. is pathogenic to citrus. PLoS One. 11(2):1-16. https://doi.org/10.1371/journal.pone.0148796.

Burkholder, W. H. 1930. The bacterial diseases of bean: an oomparativc study. Mem. Cornell Uniu. Agric. Exp. StrL No. 127.

Caballero, C. A.; Villacorta, L. M. and Pretell, C. V. 2016. Efecto del aceite esencial de clavo de olor (Syzygium aromaticum), canela (Cinnamomum zeylanicum) y su combinación sobre la acción antifúngica en Aspergillus flavus en agar chicha de maíz (Zea mays L.), variedad morada. Pueblo Continente. 22(1):123-132.

Cava, R. M.; Taboada, A.; Palop, A.; López, A. G. and Marin, F. I. 2012. Heat resistance of Listeria monocytogenes in semi-skim milk supplemented with vanillin. Int. J. Food Microbiol. 157(2):314-318. Doi: 10.1016/j.ijfoodmicro.2012.05.003.

Erosa, R. M. A.; Jiménez, M. J. M.; Ortiz, S. J. and Martínez, S. N. J. 2021. Efecto bactericida del aceite esencial de canela contra Salmonella spp. RD-ICUAP. 7(19):64-78. http://rd.buap.mx/ojs-dm/index.php/rdicuap/article/view/505.

Esquivel, F. P.; Pedroza, G. C.; Sandoval, N. M.; Mata, R. E.; Mendoza, L. O. y Balderas, I. R. 2010. Ensayo químico dirigido y estudio del efecto antimicrobiano in vitro de algunos condimentos empleados en la cocina mexicana. Rev Salud Públ Nutr. 10(7):23-25.

Goszczynska, T.; Serfontein, J. J. and Serfontein, S. 2000. Introduction to practical phytobacteriology. South Africa, Safrinet Pretoria. 1(1):56-63.

Harzallah, D.; Sadallah, S. and Larous, L. 2004. Characterization of Pseudomonas pathovars isolated from rosaceous fruit trees in East Algeria. Communications in Agricultural and Applied Biological Sciences. 69(4):443-447.

Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology. 29(1):65-87.

Hayward, A. C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: Hayward, A. C. and Hartman, G. L. Ed. Bacterial Wilt: the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, United Kingdom.123-135 pp.

Heydari, A.; Khodakaramian, G. and Zafari, D. 2012. Characterization of Pseudomonas viridiflava causing alfalfa root rot disease in Hamedan province of Iran. Journal of Plant Pathology and Microbiology. 3(5):130-135. https://doi.org/10.4172/2157-7471.1000135.

Hugh, R. and Leifson, E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-bacteria. Journal Bacteriology. 66(1):24-26.

Jones, J. B.; Jones, J. P.; McCarter, S. M. and Stall, R. E. 1984. Pseudomonas viridiflava: causal agent of bacterial leaf blight of tomato. Plant Disease. 68(4):341-342.

Lelliott, R. A. and Stead, D. E. 1987. Methods for the diagnosis of bacterial diseases of Plants. Blackwell Scientific Publications, Oxford. 99-112 pp.

Lieckfeldt, E.; Cavignac, Y.; Fekete, C. and Börner, T. 2000. Endo-chitinase gene based phylogenetic analysis of Trichoderma. Microbiology Research. 155(1):1-9. https://doi.org/10.1016/S0944-5013(00)80016-6.

Lipps, S. M. and Samac, D. A. 2022. Pseudomonas viridiflava: An internal outsider of the Pseudomonas syringae species complex. Molecular Plant Pathology. 23(1):3-15.

Morris, C. E.; Lamichhane, J. R.; Nikolić, I.; Stanković, S. and Moury, B. 2019. The overlapping continuum of host range among strains in the Pseudomonas syringae complex. Phytopathology Research. 1(4):1-16.

Ramírez, R. K.; Cristóbal, M. A. L.; Alvarado, R. D.; Serret, L. M. y Aranda, O. S. 2022. Identificación de Pseudomonas viridiflava, agente causal de la pudrición del bulbo de la cebolla (Allium cepa L.). AGROProductividad. 15(1):121-129.

Sarris, P. F.; Trantas, E. A.; Mpalantinaki, E.; Ververidis, F. and Goumas, D. E. 2012. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level. PloS one. 7(4):1-12. https://doi.org/10.1371/journal.pone.0036090.

Saygili, H.; Aysan, Y.; Ustun, N.; Mirik, M. and Sahin, F. 2008. Tomato pith necrosis disease caused by Pseudomonas species in Turkey. Ed. Pseudomonas syringae pathovars and related pathogens. Identification, epidemiology, and genomics. Dordrecht. Springer. 357-366 pp.

Schaad, N. W.; Jones, J. B. and Chun, W. 2001. Laboratory guide for the identification of plant pathogenic bacteria Ed. 3. American Phytopathological Society Press. Paul, USA. 72 p.

Tae, J. A. 2019. Pseudomonas viridiflava. Revista de Ciencia de Pesticidas. 23(4):304-311.

Thornley, M. J. 1960. The differentiation of other Gram-negative bacteria on the basis of arginine metabolism. Journal Applied Bacteriology. 23(1):37-52. https://doi.org/10.1111/j.1365-2672.1960.tb00178.x.

Published

2024-12-17

How to Cite

Hernández-Valencia, Adelaida Stephany, Daniel Leobardo Ochoa-Martínez, Anselmo Hernández-Pérez, Alejandro Martínez-Palacios, and Luis Mario Tapia-Vargas. 2024. “Pseudomonas Viridiflava Pathogenicity in Agave Inaequidens and Inhibition With Essential Oils”. Revista Mexicana De Ciencias Agrícolas 15 (8). México, ME:e3841. https://doi.org/10.29312/remexca.v15i8.3841.

Issue

Section

Articles

Most read articles by the same author(s)