Copper nanobiofortification in watermelon

Authors

  • Jazmín M. Gaucin-Delgado Universidad Politécnica de Gómez Palacio. Carretera El Vergel-La Torreña km 0 820, El Vergel, Gómez Palacio, Durango, México
  • Elizabeth Zúñiga-Valenzuela Facultad de Agricultura y Zootecnia-Universidad Juárez del Estado de Durango. Gómez Palacio, Durango, México
  • Salma Carina Pérez-Garcia Universidad Politécnica de Gómez Palacio. Carretera El Vergel-La Torreña km 0 820, El Vergel, Gómez Palacio, Durango, México
  • Cirilo Vázquez-Vazquez Facultad de Agricultura y Zootecnia-Universidad Juárez del Estado de Durango. Gómez Palacio, Durango, México
  • Ignacio Orona-Castillo Facultad de Agricultura y Zootecnia-Universidad Juárez del Estado de Durango. Gómez Palacio, Durango, México
  • Héctor D. García-Sánchez Facultad de Agricultura y Zootecnia-Universidad Juárez del Estado de Durango. Gómez Palacio, Durango, México

DOI:

https://doi.org/10.29312/remexca.v15i7.3837

Keywords:

Citrullus lanatus, bioactive compounds, nanoparticles

Abstract

Nanomaterials such as copper oxide nanoparticles (CuO NPs) are of utmost importance due to their applications in very diverse aspects, such as in agriculture, in which they allow the increase in the organoleptic characteristics of the edible part of the plant. The present work evaluated different concentrations of CuO NPs to show their effect on yield, fruit quality, bioactive quality, and Cu concentration in watermelon fruits. Six treatments of CuO NPs (0, 50, 100, 150, 200, 250 mg L-1) were evaluated. The results showed that the foliar application of CuO NPs does not affect yield; nevertheless, at high concentrations, fruit quality, bioactive quality, and Cu content increase, obtaining better results with the 250 mg L-1 treatment. Therefore, nanobiofortification with CuO NPs resulted in better-quality watermelon fruits due to the accumulation of bioactive compounds.

Downloads

Download data is not yet available.

References

Ananda-Murthy, H. C.; Abebe, B. A.; Prakash C. H. and Shantaveerayya, K. S. 2018. A review on green synthesis and applications of Cu and CuO nanoparticles. Material Science Research India. 15(3):279-295.

AOAC. 1990. Asociación de Químicos Analíticos Oficiales. Métodos oficiales de análisis 15va. Ed. Asociación de Químicos Analíticos Oficiales: Washington, DC, EE. UU.

Brand-Williams, W.; Cuvelier, M. E. and Berset, C. C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Science and Technology. 28(1):25-30.

Buturi, C. V.; Mauro, R. P.; Fogliano, V.; Leonardi, C. and Giuffrida, F. 2021. Mineral biofortification of vegetables as a tool to improve human diet. En Foods. 10(2):12-25.

Cavalcante, V. S.; Prado, R. M.; Vasconcelos, R. L.; Almeida, H. J. and Silva, T. R. 2019. Growth and nutritional efficiency of watermelon plants grown under macronutrient deficiencies. HortScience. 54(4):742-738.

Costa-Da, M. V. and Sharma, P. K. 2016. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 54(4):110-119.

Cumplido-Nájera, C. F.; González-Morales, S.; Ortega-Ortíz, H.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; and Juárez-Maldonado, A. 2019. The application of copper nanoparticles and potassium silicate stimulate the tolerance to clavibacter michiganensis in tomato plants. Scientia Horticulturae. 245(8):82-89.

Fortis-Hernández, M.; Ortiz-Lopez, J.; Preciado-Rangel, P.; Trejo-Valencia, R.; Lagunes-Fortiz, E.; Andrade-Sifuentes, A.; and Rueda-Puente, E. O. 2022. Biofortification with copper nanoparticles (NPs Cu) and its effect on the physical and nutraceutical quality of hydroponic melon fruits. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 50(1):25-30.

García-Bueno, N. and Marín, A. A. 2021. Ecological management of biomass and metal bioaccumulation in fish-cage nettings: Influence of antifouling paint and fiber manufacture. Aquaculture. 2(544):737142-737160.

Gaucin-Delgado, J. M.; Ortiz-Campos, A.; Hernandez-Montiel, L. G.; Fortis-Hernandez, M.; Reyes-Pérez, J. J.; Gonzáles-Fuentes, J. A. and Preciado-Rangel, P. 2022. CuO-NPs improve biosynthesis of bioactive compounds in lettuce. Plants. 11(7):19-12.

Gómez-Garzón, M. 2018. Nanomateriales, nanopartículas y síntesis verde. Revista Repertorio de Medicina y Cirugía. 27(2):75-80.

Gómez-Romero, M.; Arráez-Román, D.; Segura-Carretero, A. and Fernández-Gutiérrez, A. 2007. Analytical determination of antioxidants in tomato: typical components of the Mediterranean diet. Journal of Separation Science. 30(4):452-461.

Hernández-Hernández, H.; Quiterio-Gutiérrez, T.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; Hernández-Fuentes, A. D.; De-Fuente, M. C.; Valdés-Reyna, J.; and Juárez-Maldonado, A. 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants. 8(10):1-17.

Kusiak, M. K.; Sierocka, M. A.; Swieca, M. P. and Pasieczna-Patkowska, S. 2023. Unveiling of interactions between foliar applied Cu nanoparticles and barley suffering from Cu deficiency. Environmental Pollution. 2(320):121044-121060.

Lasso-Robledo, J. L.; Torres, B. G. and Peralta-Videa, J. R. 2022. Do all Cu nanoparticles have similar applications in nano-enabled agriculture? En Plant Nano Biology. 1(6):13-21.

León-Morales, J. M. and Sepulveda-Jimez, G. 2012. El daño por oxidación causado por cobre y la respuesta antioxidante de las plantas. Interciencia. 37(11):805-811.

Li, Y. I.; Zhang, Y. Z.; Li, Y. I.; Tang, F. E.; Lv, Q. I.; Zhang, J. I.; Xiao, S. A.; Tang, J. U.; and Zhang, X. W. 2019. Experimental study on compatibility of eco-friendly insulating medium C5F10O/CO2 Gas Mixture with copper and aluminum. IEEE Access. 1(7):83994-84002.

Lopez-Lima, D.; Mtz-Enriquez, A. I.; Carrión, G. B.; Basurto-Cereceda, S. and Pariona, N. A. 2021. The bifunctional role of copper nanoparticles in tomato: effective treatment for fusarium wilt and plant growth promoter. Scientia Horticulturae. 2(277):109810-109820.

Luna, C. V. 2019. Establecimiento de un método eficiente de estandarización de la germinación in vitro de Moringa oleifera (Moringaceae). Acta Botánica Mexicana. 1(2):10-16.

Mir, A. R.; Pichtel, J. and Hayat, S. 2021. Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. BioMetals. 34(4):737-759.

Naz, S.; Gul, A. and Zia, M. 2020. Toxicity of copper oxide nanoparticles: a review study. En IET Nanobiotechnology. 14(1):1-13.

Nazir, H.; Batool, M.; Bolivar-Osorio, F. J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin, G. H. and Kannan, A. M. 2019. Recent developments in phase change materials for energy storage applications: a review. International Journal of Heat and Mass Transfer. 129(1):491-523.

Pilon, M. I.; Abdel-Ghany, S. E.; Cohu, C. M.; Gogolin, K. A. and Ye, H. O. 2006. Copper cofactor delivery in plant cells. En Current Opinion in Plant Biology. 9(3):256-263.

Rietra, R. P. J. J.; Heinen, M. J.; Dimkpa, C. O. and Bindraban, P. S. 2017. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis. 48(16):1895-1920.

Rivera-Gutiérrez, R. G.; Preciado-Rangel, P.; Fortis-Hernández, M.; Betancourt-Galindo, R.; Yescas-Coronado, P. and Orozco-Vidal, J. A. 2021. Nanoparticulas de óxido de zinc y su efecto en el rendimiento y calidad de melón. Revista Mexicana de Ciencias Agrícolas. 12(5):791-803.

Sachdev, S. A.; Ansari, S. A.; Ansari, M. I.; Fujita, M. I. and Hasanuzzaman, M. J. 2021. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants. 10(2):1-37.

Saleem, M. H.; Fahad, S. D.; Khan, S. U.; Din, M. I.; Ullah, A. L.; Sabagh, A. E.; Hossain, A. O.; Llanes, A. U. and Liu, L. 2020. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environmental Science and Pollution Research. 27(5):5211-5221.

Sandoval-Legazpi, J. J.; Galindo-Verdugo, O. E.; Arellano-Panduro, A. J. and Ancira-Sánchez, L. 2019. Estudio preliminar del fertirriego en el cultivo de la sandía (Citrullus lanatus, thumb) en Tolimán, Jalisco. CIBA. Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias. 8(16):54-81.

Santás-Miguel, V.; Arias-Estévez, M.; Rodríguez-Seijo, A. and Arenas-Lago, D. 2023. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental Pollution. 1(334):10-21.

Schiavon, M. C.; Nardi, S. A.; Dalla-Vecchia, F. A. and Ertani, A. R. 2020. Selenium biofortification in the 21st. century: situation and challenges for healthy human nutrition. Plant and Soil. 453:245-270.

Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha, X.; Murtaza, G.; Dumat, C. and Shahid, M. 2020a. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil plant environment. Chemosphere. 2(259):127436-127458.

SIAP. 2021. Creció producción y exportación de sandía mexicana en 2020. https://www.gob.mx/agricultura/prensa/crecioproduccionyexportaciondesandiamexicana-en-2020?idiom=es#:~:text=En2020%2C. La producción nacional de Agricultura y Desarrollo Rural.

Urquilla, A. R. 2019. Impacto de la nanotecnología como revolución industrial a nivel mundial. Realidad y Reflexión. 49(49):66-78.

Zhang, L. H.; and Liu, Y. I. 2020. Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology. 92(5):479-490.

Zhao, L. H.; Bai, T. A.; Wei, H. E. and Gardea-Torresdey, J. 2022. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat food. 1(2):829-836.

Published

2024-12-11

How to Cite

Gaucin-Delgado, Jazmín M., Elizabeth Zúñiga-Valenzuela, Salma Carina Pérez-Garcia, Cirilo Vázquez-Vazquez, Ignacio Orona-Castillo, and Héctor D. García-Sánchez. 2024. “Copper Nanobiofortification in Watermelon”. Revista Mexicana De Ciencias Agrícolas 15 (7). México, ME:e3837. https://doi.org/10.29312/remexca.v15i7.3837.

Issue

Section

Articles

Most read articles by the same author(s)