Molecular characterization of wild and cultivated Chenopodium berlandieri (Chenopodiaceae) from central Mexico

Authors

  • Juan Manuel García-Andrade Departamento de Biología-Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, México. CP. 52750. Tel. 55 53297200, ext. 12310
  • Eulogio De la Cruz-Torres Departamento de Biología-Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, México. CP. 52750. Tel. 55 53297200, ext. 12310
  • Martín Rubí-Arriaga Facultad de Ciencias Agrícolas-Campus El Cerrillo-Universidad Autónoma del Estado de México. El Cerrillo Piedras Blancas, Toluca, México. CP. 50200. Tel. 722 2965529
  • Antonio Laguna-Cerda Facultad de Ciencias Agrícolas-Campus El Cerrillo-Universidad Autónoma del Estado de México. El Cerrillo Piedras Blancas, Toluca, México. CP. 50200. Tel. 722 2965529
  • Dora Ma. Sangerman-Jarquín Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. Tel. 55 8718700, ext. 85353

DOI:

https://doi.org/10.29312/remexca.v16i6.3805

Keywords:

Chenopodium berlandieri subsp. nuttalliae, Chenopodium quinua, molecular markers, SSR

Abstract

The genus Chenopodium contains two species of importance in the diet of Mesoamerica and South America, namely Chenopodium quinoa Willd. (Quinoa) and Chenopodium berlandieri subsp. nuttalliae, the genetic resources of which have not been characterized despite their great nutritional potential and adaptability. In order to molecularly characterize germplasm of red chia, huauzontle (Chenopodium berlandieri subsp. nuttalliae) and quinoa (Chenopodium quinoa Willd.), we molecularly studied 48 genotypes from the Germplasm Banks of the National Institute of Nuclear Research and the Plant Genetic Resources Laboratory of Brigham Young University. To determine the genetic variability, 14 microsatellite markers (SSRs), specific for Chenopodium, were used. Genetic affinity was assessed using the Jaccard similarity coefficient and the analysis of results was performed using the UPGMA method. The results indicate that, within the studied genotypes of both species, 175 alleles were produced, ranging from 8 (KGA16, QCA88) to 16 (QCA37, QAAT74, QCA57), these being the ones that obtained the most alleles per locus. The dendrogram showed that, at a coefficient of 0.9, four main groups were formed, where groups 1 and 2 join advanced lines of quinoa and red chia, mutants of red chia and huauzontle, groups 3 and 4 joins chia and huauzontle, and group five includes all the germplasm of the Plant Genetic Resources Laboratory of BYU, mostly made up of subspecies of Chenopodium zsachei, boscianum and zinatum. It was concluded that there is a great genetic affinity between quinoa, huauzontle and red chia, which opens the possibility of inter- and intraspecific crosses for the genetic improvement of both species.

Downloads

Download data is not yet available.

References

Allende, C. M. J. 2017. Caracterización morfológica y molecular de accesiones de Quinua (Chenopodium quinoa Willd.) para estimar variabilidad genética. Tesis maestría en mejoramiento genético de plantas. Universidad Nacional Agraria La Molina Escuela de Posgrado. Lima, Perú. 1-90 pp.

Allende, C. L. 2014. Estudio de radiosensibilidad de pseudocereales mediante marcadores moleculares y microscopía electrónica. Tesis Licenciatura, Facultad de ciencias. Universidad Autónoma del Estado de México (UAEM). 17-40 pp.

De-Cruz, T. E.; Xingú, L. A.; García, A. J. M.; Germán, V. I. y Germán, V. G. 2010. Aplicación de técnicas moleculares en el estudio del huauzontle, cultivo prehispánico alternativo para zonas agrícolas. Contacto Nuclear ININ núm. 55. 16-21 pp.

De la Cruz, T. E.; Rubluo, I. A.; Palomino, G. H.; García, A. J. M. and Laguna, C. A. 2007. Characterization of Chenopodium germplasm selection of putative mutants and its cytogenetic study. In: Ochat, S.; Mohan, J. S. Ed. Breeding of neglected and underutilized crops species and herbs. Science Publishers. Enfield, NH, USA. 123-36 pp.

Donaire, T. G. V. 2018. Caracterización molecular de 75 accesiones de quinua (Chenopodium quínoa Willd) del departamento de puno mediante marcadores microsatélites. Tesis Facultad de ciencias. Universidad Nacional Agraria La Molina. Lima, Perú. 122 p.

Eisa, S.; Hussin, S.; Geissler, N. and Koyro, H. W. 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Australian Journal of Crop Science. 6(2):357-368.

García, A. J. M. 2017. Caracterización molecular de Chenopodium mediante SSR. Informe técnico Científico GB 209/2017. Instituto Nacional de Investigaciones Nucleares, México. 1-3 pp.

Jacobsen, S. E.; Mujica A. and Jensen, C. R. 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int. 19(1-2):99-109.

Jacobsen, S. E.; Jensen, C. R. and Liu, F. 2012. Improving crop production in the arid Mediterranean climate. Field Crop Res. 128:34-47. https://doi.org/10.1016/j.fcr.2011.12.001.

Jarvis, D. E.; Kopp, O.; Jellen, E. N.; Marllory, M. C.; Pattee, J.; Bonifacio, F. A.; Coleman, C. E.; Stevens, M. R.; Fairbanks, D. J. and Maughan, P. J. 2008. Simple sequence repeats marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J. Genet. 87(1):39-51. https://doi.org/10.1007/s12041-008-0006-6.

Medina, F. J. 2006. Composición nutricional de la quinua. http://xa.yimg.com/kq/groups/21260884/1421089015/name/Composici%C3%B3n+Nutricional+de+la+Quinua.doc.

Morales, A. y Zurita, S. A. 2009. La quinoa como fuente de genes de resistencia a estrés por sequía. Centro Estudios Avanzados en Zonas Áridas, CEAZA. La Serena, Universidad Andrés Bello, Santiago, Chile. 1-8 pp.

Mason, S. L.; Stevens, M. R.; Jellen, E. N.; Bonifacio, F. A.; Fairbanks, D. J.; Coleman C. E.; McCarty, R. R.; Rasmussen, A. G. and Maughan, P. J. 2005. Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci. 45(4):1618-1630. https://doi.org/10.2135/cropsci2004.0295.

Maughan, P. J.; Jellen E. R.; Stevens, M. R.; Coleman, C.E.; Ricks, M.; Mason, S. L.; Jarvis, D. E. and Gardunia, B. and Fairbanks, D. J. 2013. Manual. DNA Microprep extraction. Plant genetic resources laboratory of Brigham young university (BYU). Provo, Utah, USA. 1-3 pp.

Maughan, P. J.; Jarvis, D. E.; Cruz-Torres, E.; Jaggi, K. E.; Warner, H. C.; Marcheschi, A. K.; Gomez-Pando, L.; Fuentes, F. ; Mayta-Anko, M. E.; Curti, R.; Rey, E.; Tester, M. and Jellen, E. N. 2024. North American pitseed goosefoot (Chenopodium berlandieri) is a genetic resource to improve Andean quinoa (C. quinoa). Scientific reports. 14:1-13. https://doi.org/10.1038/s41598-024-63106-8.

Nolasco, O. C.; Cruz, W.; Santa-Cruz, C. and Gutiérrez, A. 2013. Evaluation of the DNA polymorphism of six varieties of Chenopodium quinoa Willd, using AFLP. The Biologist. 11(2):277-286.

Ramírez, V. M. L.; Espitia, R. E.; Carballo, C. A.; Zepeda, B. R.; Vaquera, H. H. and Córdova T. L. 2011. Fertilization and plant density in varieties of amaranth (Amaranthus hypochondriacus L.). Revista Mexicana de Ciencias Agrícolas. 2(6):855-866. http://www.redalyc.org/articulo.oa?id=263121473005.

Xingú, L. A. 2010. Caracterización del germoplasma de Huauzontle (Chenopodium berlandieri subsp. nuttalliae) en el Estado de México mediante técnicas moleculares (SSR), Tesis de Maestría, Universidad Autónoma del Estado de México. 9-16 pp.

Xingú-López, A.; Balbuena-Melgarejo, A.; Laguna-Cerda, A. L. G.; Iglesias-Andréu, L. G.; Olivares-Cruz, V. y Cruz-Torres. E. 2018. Caracterización de huauzontle (Chenopodium berlandieri spp. nuttalliae) del Estado de México mediante microsatélites. Ciencia y Tecnol. Agrop. México. 2(6):9-16.

Yasui Y.; Hirakawa, H.; Oikawa, T.; Toyoshima, M.; Matsuzaki, C.; Ueno, M.; Mizuno, N.; Nagatoshi, Y.; Imamura, T.; Miyago, M.; Tanaka, K.; Mise, K.; Tanaka, T.; Mizukoshi, H.; Mori, M. and Fujita, Y. 2016. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res. 23(6):535-546. https://doi.org/10.1093/dnares/dsw037.

Published

2025-09-20

How to Cite

García-Andrade, Juan Manuel, Eulogio De la Cruz-Torres, Martín Rubí-Arriaga, Antonio Laguna-Cerda, and Dora Ma. Sangerman-Jarquín. 2025. “Molecular Characterization of Wild and Cultivated Chenopodium Berlandieri (Chenopodiaceae) from Central Mexico”. Revista Mexicana De Ciencias Agrícolas 16 (6). México, ME:e3805. https://doi.org/10.29312/remexca.v16i6.3805.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 > >>