Biochar from sugarcane apexes in the initial growth of cucumber

Authors

  • Porfirio Juárez-López Posgrado en Ciencias Agropecuarias y Desarrollo Rural-Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos, México. CP. 62210. https://orcid.org/0000-0002-4241-1110
  • Carlos Alberto Pérez-Cabrera Colegio Superior Agropecuario del Estado de Guerrero. Av. Vicente Guerrero 81, Primer Piso, Col. Centro, Iguala de la Independencia, Guerrero. CP. 40000
  • José Anzaldo-Hernández Centro Universitario de Ciencias Exactas e Ingenierías-Universidad de Guadalajara. Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara, Jalisco, México. CP. 44430 https://orcid.org/0000-0002-2300-6195
  • Irán Alia-Tejacal Posgrado en Ciencias Agropecuarias y Desarrollo Rural-Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos, México. CP. 62210 https://orcid.org/0000-0002-2242-2293
  • Eduardo Salcedo-Pérez Centro Universitario de Ciencias Biológicas y Agropecuarias-Universidad de Guadalajara. Ramón Padilla Sánchez 2100, Nextipac, Zapopan, Jalisco, México. CP. 45200 https://orcid.org/0000-0002-5292-3099
  • Víctor López-Martínez Posgrado en Ciencias Agropecuarias y Desarrollo Rural-Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos, México. CP. 62210 https://orcid.org/0000-0002-9328-8810

DOI:

https://doi.org/10.29312/remexca.v16i4.3727

Keywords:

Cucumis sativus L., biochar, physical properties, substrate

Abstract

One of the main uses of biochar is as a soil improver; however, there are few studies on its use as a substrate with the aim of reducing the use of commercial peat moss. The effect of the physical properties of biochar from sugarcane apexes on the growth of ‘Thunderbird’ cucumber seedlings was evaluated. The treatments were mixtures of Bsca and peat moss (P): 0/100, 20/80, 40/60, 60/40, 80/20, and 100/0 v/v. The sowing was carried out in a greenhouse of the Autonomous University of the State of Morelos and physical properties of the substrates and growth variables in cucumber seedlings were evaluated with a completely randomized experimental design and randomized blocks, respectively. Peat moss produced the highest seedling growth; on the other hand, the proportions 20Bsca:80P and 40Bsca:60P allowed a good root development by presenting a fresh root weight, with 607.83 and 664.83 mg; whereas in root dry weight, they had 39.83 and 37.33 mg, respectively, values similar to those obtained in peat, these results were related to the physical properties of these mixtures, where the particle size determined the pore space available for water and air. Biochar from sugarcane apexes can be added up to 40% to commercial peat moss without altering the physical properties of an ideal substrate; likewise, mixtures of 20 and 40% biochar with peat moss allow the growth of cucumber seedling roots similar to those obtained in commercial peat moss.

Downloads

Download data is not yet available.

Author Biographies

Irán Alia-Tejacal, Posgrado en Ciencias Agropecuarias y Desarrollo Rural-Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos, México. CP. 62210

Profesor Investigador

Posgrado en Ciencias Agropecuarias y Desarrollo Rural

Universidad Autónoma del Estado de Morelos

Víctor López-Martínez, Posgrado en Ciencias Agropecuarias y Desarrollo Rural-Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos, México. CP. 62210

Profesor Investigador

Posgrado en Ciencias Agropecuarias y Desarrollo Rural

Universidad Autónoma del Estado de Morelos

References

Adeyemi, T. O. A. and Idowu, O. D. 2017. Biochar: Promoting crop yield, improving soil fertility, mitigating climate change and restoring polluted soils. Word News of Natural Sciences. 8(1):27-36.

Araméndis-Tatis, H.; Cardona-Ayala, C. y Correa-Álvarez, E. 2013. Efecto de diferentes sustratos en la calidad de plántulas de berenjena (Solanum melongena L.). Revista Colombiana de Ciencias Hortícolas. 7(1):55-61.

Arévalo-Ortega, J.; Ynfante-Martínez, D.; Hernández-Ochandía, D.; Alonso-de la Cruz, R. y Rodríguez-Hernández, M. 2023. Efecto de biocarbones y Pochonia chlamydosporia (Goddard) Zare y Gams en el crecimientode plantas de tomate (Solanum lycopersicum L.) y la protección frente a nematodos. Revista de Protección Vegetal. 38(1):1.8. https://cu-id.com/2247/v38e15.

Barbaro, L. A. 2023. Evaluación de las propiedades físicas del sustrato para la producción de plantines de yerba mate. Ciencia del Suelo. 41(2):131-143.

Calva, C. E. H. y Espinosa, J. V. R. 2017. Efecto de la aplicación de cuatro materiales de encalado en control de la acidez de un suelo de Loreto, Orellana. Siembra. 4(1):110-120.

Castro-Garibay, S. L.; Aldrete, A.; López-Upton, J. y Ordaz-Chaparro, V. M. 2020. Caracterización física y química de sustratos con base en corteza y aserrín de pino. Madera y Bosques. 25(2):1-10. Doi.org/10.21829/myb/2019.2521520.

Cuesta, G. y Mondaca, E. 2014. Efecto de un biorregulador a base de auxinas sobre el crecimiento de plantines de tomate. Revista Chapingo Serie Horticultura. 20(2):215-222. Doi:10.5154/r.rchsh.2014.01.001.

DOF. 2000. Diario Oficial de la Federación. Proyecto de Norma Oficial Mexicana PROY-NOM-021-RECNAT-2000. Estudios, muestreos y análisis. Órgano del Gobierno Constitucional de los Estados Unidos Mexicanos. Tomo DLXV-12:6-74.

Escalante-Rebolledo, A.; Pérez-López, G.; Hidalgo-Moreno, C.; López-Collado, J.; Campos-Alves, J.; Valtierra-Pacheco, E. y Etchevers-Barra, J. D. 2016. Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoamericana. 34(2):367-382. http://www.redalyc.org/articulo.oa?id=57346617009.

Gayosso-Rodríguez, S.; Borges-Gómez, L.; Villanueva-Couih, E.; Estrada-Botello, M. A. y Garruña-Hernández, R. 2018. Caracterización física y química de materiales orgánicos para sustratos agrícolas. Agrociencia. 52(4):639-652.

Gayosso-Rodríguez, S.; Villanueva-Couih, E.; Estrada-Botello, M. A. y Garruña-Hernández, R. 2018a. Caracterización físico-química de mezclas de residuos orgánicos utilizados como sustratos agrícolas. Bioagro. 30(3):179-190.

Guo, M. 2020. The 3R principles for applying biochar to improve soil health. Soil Systems 4(1):1-16. Doi:10.3390/soilsystems4010009.

Gutiérrez-Castorena, M. C.; Hernández-Escobar, J.; Ortiz-Solorio, C. A.; Anicua-Sánchez, R. y Hernández-Lara, M. E. 2011. Relación porosidad-retención de humedad en mezclas de sustratos y su efecto sobre variables respuesta en plántulas de lechuga. Revista Chapingo Serie Horticultura. 17(3):183-196.

Huang, L. and Gu, M. 2019. Effects of biochar on container substrate properties and growth of plants a review. Horticulturae. 5(1):2-25. Doi.10.3390/horticulturae50100147.

Landis, T. D.; Tinus, R. W.; Mc Donald, S. E. and Barnett, J. P. 1990. Containers and growing media, Vol. 2. The Container Tree Nursery Manual. Agric. Handbook 674. USDA Washington, DC, USA. Department of Agriculture, Forest Service. 88 p.

Mixquititla-Casbis, G.; Villegas-Torres, O. G.; Andradre-Rodríguez, M. y Sotelo-Nava, H. 2022. Propiedades físicas y químicas de sustratos en función de su granulometría y componente orgánico-mineral. Acta Agrícola y Pecuaria. 8(1):1-9. https://doi.org/10.30973/aap/2022.8.0081007.

Montaño-Mata, N. J.; Gil-Marín, J. A. y Palmares, Y. 2018. Rendimiento de pepino (Cucumis sativus L.) en función del tipo de bandeja y la edad de transplante de las plántulas. Anales Científicos. 79(2):377-385. http//dx.doi.org/10.21704/ac.v79i2.1247.

Orozco-Gutiérrez, G.; Medina-Telez, L.; Elvira-Espinosa, A. y Cervantes-Preciado, J. F. 2021. Biocarbón de bambú como mejorador de la fertilidad del suelo en caña de azúcar. Revista Mexicana de Ciencias Forestales. 12(65):67-88. https://doi.org/10.29298/rmcf.v12i65.780.

Ortega-Ramírez, A. T. y Olaya-Pulido, M. P. 2022. Aplicación de biocarbón como estrategia de remediación de suelos contaminados por hidrocarburos. Revista Gestión y Ambiente. 25(2):1-17. https://revistas.unal.edu.co/index.php/gestion/article/view/103418.

Pérez-Cabrera, C. A.; Juárez-López, P.; Anzaldo-Hernández, J.; Alia-Tejacal, I.; Gayosso-Rodríguez, S.; Salcedo-Pérez, E.; Guillén-Sánchez, D.; Balois-Morales, R. and Cabrera-Chavarría, L. G. 2021. Rice husk biochar as a substrate for growth of cucumber seedlings. Revista Chapingo Serie Horticultura 27(3):171-183. Doi:10.5154/r.rchsh.2021.01.002.

Ravindiran, G.; Rajamanickam, S.; Janardhan, G. Hayder, G.; Alagumalai, A.; Mahian, O.; Lam, S. S. and Sonne, C. 2024. Production and modifications of biochar to engineered materials and its applications for environmental sustainability: a review. Biochar. 6(62):1-27. https://doi.org/10.1007/s42773-024-00350-1.

Rebollar-Rebollar, S.; Ramírez-Abarca, O. y Hernández-Martínez, J. 2022. Competitividad y valor agregado de pepino Persa (Cucumis sativus L.) en agricultura por contrato: estudio de caso. Terra Latinoamericana. 40(1):1-10. https://doi.org/10.28940/terra.v40i0.952.

SAS Institute 2004. SAS/STAT User’s Guide. Release 9.1. SAS Institute. Cary, North Carolina, USA. 5121 p.

SIAP. 2024. Servicio de Información Agroalimentaria y Pesquera. Producción Anual Agrícola. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119.

Villegas-Torres, O. G; Domínguez-Patiño, M. L.; Albavera-Pérez, M.; Andrade-Rodríguez, M.; Sotelo-Nava, H.; Martínez-Rangel, M. G.; Aguilar-Cortés, M.; Castillo-Carpintero, C. y Magadan-Salazar, M. del C. 2017. Sustrato como material de última generación. OmniaScience Publisher SL. Barcelona, España. 53 p. http://dx.doi.org/10.3926/oms.364.

Velázquez-Maldonado, J.; Juárez-López, P.; Anzaldo-Hernández, J.; Alejo-Santiago, G.; Valdez-Aguilar, L. A.; Alia-Tejacal, I. López-Martínez, V.; Pérez-Arias, G. A. y Guillén-Sánchez, D. 2019. Concentración nutrimental de biocarbón de cascarilla de arroz. Revista Fitotecnia Mexicana. 42(2):129-136.

Webber, C. L.; White, P. M.; Spaunhorst, D. J.; Lima, I. M. and Petrie, E. C. 2018. Sugarcane biochar as an amendment for greenhouse growing media for the production of cucurbit seedlings. Journal of Agricultural Science 10(2):104-115. Doi:10.5539/jas.v10n2p104.

Webber, C. L.; White, P. M.; Spaunhorst, D. J. and Petrie, E. C. 2017. Impact of sugarcane bagasse ash as an amendment on the physical properties, nutrient content and seedling growth of a certified organic greenhouse growing media. Journal of Agricultural Science. 9(7):1-11. Doi:10.5539/jas.v9n7p1.

Published

2025-07-10

How to Cite

Juárez-López, Porfirio, Carlos Alberto Pérez-Cabrera, José Anzaldo-Hernández, Irán Alia-Tejacal, Eduardo Salcedo-Pérez, and Víctor López-Martínez. 2025. “Biochar from Sugarcane Apexes in the Initial Growth of Cucumber”. Revista Mexicana De Ciencias Agrícolas 16 (4). México, ME:e3727. https://doi.org/10.29312/remexca.v16i4.3727.

Issue

Section

Articles

Most read articles by the same author(s)