Genetic parameters and response to selection in the PANDOLY.PABG wheat population

Authors

  • Huizar Leonardo Díaz-Ceniceros Postgrado en Recursos Genéticos y Productividad-Genética-Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230
  • Héctor Eduardo Villaseñor-Mir Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250
  • Ignacio Benítez-Riquelme Postgrado en Recursos Genéticos y Productividad-Genética-Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230
  • Rene Hortelano Santa-Rosa Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250
  • Yerica Renata Valdez-Rodríguez Postgrado en Recursos Genéticos y Productividad-Genética-Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230
  • Eliel Martínez-Cruz Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250

DOI:

https://doi.org/10.29312/remexca.v15i7.3656

Keywords:

Triticum aestivum L., dominant allele, male sterility, heritability

Abstract

Genetic breeding in autogamous species has been carried out through recurrent selection methods that imply reduced variability and long periods between selection cycles. To determine genetic variability, heritability, and response to selection, we estimated the genetic parameters of 14 recurrent selection cycles in the male-sterile wheat population PANDOLY.PABG, which carries the dominant male-sterile mutant gene ‘Oly’. During the 2016-2017 winter cycle in Chapingo and Santa Lucía, Texcoco, Mexico, 100 plants per cycle were labeled and the following variables were recorded: days to flowering, days to physiological maturity, grain filling rate, plant height, biological yield per plant, grain yield per plant, harvest index, weight of 100 seeds, number of spikes per plant, and number of spikelets per spike. The selection cycles were evaluated in three environments in a completely randomized design. The response to selection was negative for days to flowering, days to physiological maturity, biological yield per plant, number of spikes per plant, and number of spikelets per spike; the variability decreased in days to flowering, days to physiological maturity, plant height, biological yield per plant, number of spikes per plant, W100S; and the variables of grain yield per plant, harvest index, and weight of 100 seeds presented high values of h2 and σ2A; the latter are considered important variables to achieve greater gains in subsequent selection cycles. The above changes are the result of 14 recurrent selection cycles and it was confirmed that, with the PANDOLY population, there are advantages when compared to the traditional method to achieve genetic advances in a recurrent selection cycle per crop cycle.

Downloads

Download data is not yet available.

References

Ataei, R.; Gholamhoseini, M. and Kamalizadeh, M. 2017. Genetic analysis for quantitative traits in bread wheat exposed to irrigated and drought stress conditions. Phyton. International Journal of Experimental Botany. 86:228-235.

Benítez-Riquelme, I. 2001. Comportamiento de líneas S3 de trigo derivadas de poblaciones mejoradas por selección recurrente. Revista Fitotecnia Mexicana. 24(1):63-70.

Cobb, J. N.; Juma, R. U.; Biswas, P. S.; Arbelaez, J. D.; Rutkoski, J.; Atlin, G.; Hagen, T.; Quinn, M. and Ng, E. H. 2019. Enhancing the rate of genetic gain in the public sector plant breeding programs: lessons from the breeder’s equation. Theoretical and Applied Genetics. 132(3):627-645.

Díaz-Ceniceros, H. L.; Villaseñor-Mir, H. E.; Benítez-Riquelme, I.; Mendoza-Castillo, M. C. y Hortelano-Santa, R. R. 2020. Avance genético en 14 ciclos de selección recurrente en la población androestéril PANDOLY.PABG de riego. Revista Fitotecnia Mexicana. 43(3):267-274.

FAO. 2021. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Cereal supply and demand brief in world food situation. FAO. http://www.fao.org/worldfoodsituation/csdb/.

FAOSTAT. 2023. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Datos sobre alimentación y agricultura. Dominio: cultivos y productos de ganadería. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Roma. https://www.fao.org/faostat/es/#data/QCL.

Figueroa-López, P.; Félix-Fuentes, J. L.; Fuentes-Dávila, G.; Valenzuela-Herrera, V.; Chávez-Villalba, G. y Mendoza-Lugo, J. A. 2010. CIRNO C2008, nueva variedad de trigo cristalino con alto rendimiento potencial para el estado de Sonora. Revista Mexicana Ciencias Agrícolas. 1(5):739-744.

Hassan, M. S.; El-Said, R. A. R. and Abd-El-Haleem, S. H. M. 2013. Estimation of heritability and variance components for some quantitative traits in bread wheat (Triticum aestivum L.). World Applied Sciences Journal. 27(8):944-949.

Huang, Y. Y. and Deng, J. Y. 1988. Preliminary analyses of the effectiveness of utilization of Taigu genetic male-sterile wheat in recurrent selection and complex crossing. In: Miller T. E.; Koebner, R. M. D. Ed. Proc. 7th Int. Wheat Genetics Symposium, Cambridge. 1105-1108. pp

Laala, Z.; Benmahammed, A.; Oulmi, A.; Fellahi, Z. E. A. and Bouzerzour, H.; 2017. Response to F3 selection for grain yield in durum wheat [Triticum turgidum (L.) Thell. ssp. turgidum conv. durum (Desf.) Mac Key] under south mediterranean conditions. Annual Research and Review in Biology. 21(2):1-11.

Lamara, A.; Fellahi, Z. E. A.; Hannachi, A. and Benniou, R. 2022. Assessing the phenotypic variation, heritability and genetic advance in bread wheat (Triticum aestivum L.) candidate lines grown under rainfed semi-arid region of Algeria. Revista Facultad Nacional de Agronomía Medellín. 75(3):10107-10118.

Liu, J.; Liu, L.; Hou, N.; Zhang, A. and Liu, L. 2007. Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica. 155(1-2):249-258.

Magda, E. and El-Rahman, A. 2013. Estimation of some genetic parameters through generation means analysis in three bread wheat crosses. Alexandria Journal of Agricultural Research. 58(3):183-195.

Marais, G. F.; Botes, W. C. and Louw, J. H. 2000. Recurrent selection using male sterility and hydroponic tiller culture in pedigree breeding of wheat. Plant Breeding. 119(5):440-442.

Márquez-Sánchez, F. 1985. Genotecnia vegetal, métodos, teoría, resultados. Tomo I. AGT Ed. S. A. México. 7-126 pp.

Márquez-Sánchez, F. 1988. Genotecnia vegetal, métodos, teoría, resultados. Tomo II. AGT Ed. SA. México. 481-547 pp.

Melendres-Martínez, J. R.; Valdivia-Bernal, C.; Lemus-Flores, R.; Medina-Torres, R.; García-López, M.; Ortiz-Caton, A.; Espinosa-Calderón, A. y Tadeo-Robledo, M. 2018. Estimación de parámetros genéticos de maíz bajo mejoramiento por selección recíproca recurrente. Revista Mexicana Ciencias Agrícolas. 9(7):1327-1337. https://doi.org/https://doi.org/10.29312/remexca.v9i7.1668.

Olmedo‐Arcega, O. B.; Elias, E. M. and Cantrell, R. G. 1995. Recurrent selection for grain yield in durum wheat. Crop science. 35(3):714-719.

Rutkoski, J. E.; Krause, M. R. and Sorrells, M. E. 2022. Breeding methods: population improvement and selection methods. In wheat improvement: food security in a changing climate. 83-96 pp.

Saeed, M. and Khalil, I. H. 2017. Combining ability and narrow-sense heritability in wheat (Triticum aestivum L.) under rainfed environment. Sarhad Journal of Agriculture. 33(1):22-29.

Sahagún-Castellanos, J. 2000. Estimación de varianzas genéticas con medios hermanos maternos y diferentes niveles endogámicos y repeticiones. Agrociencia. 34(1):21-32.

SAS. 2014. Statistical Analysis System Institute. SAS user’s guide. Statistics. SAS Institute Cary, NC. USA.

Solís-Moya, E.; Villaseñor-Mir, H. E.; Molina-Galán, J.; Espitia-Rangel, E.; Cervantes-Santana, T. y Martínez-Garza, A. 2002. Selección masal visual recurrente para rendimiento de grano en una población androdroestéril de trigo harinero. Agrociencia. 36(2):191-200.

Solís-Moya, E.; Mariscal-Amaro, L. A.; Huerta-Espino, J.; Villaseñor-Mir, H. E.; Ledesma- Ramírez, L. y Pérez-Herrera, P. 2019. Faisán S2016: nueva variedad de trigo harinero de gluten débil para El Bajío. Revista Mexicana de Ciencias Agrícolas. 10(7):1699-1703. Doi: 10.29312/remexca.v10i7.1899.

Sowmya, B.; Yadav, M.; Lal, P. K. and Rai, G. M. 2017. Correlated response and path analysis for different characters in F3 segregating generation of wheat (Triticum aestivum Em. Thell. L.). International Journal of Current Microbiology and Applied Sciences. 6(9):166-174. Doi: 10.20546/ijcmas.2017.609.021.

Tadesse, W.; Sanchez-Garcia, M.; Assefa, S. G.; Amri, A.; Bishaw, Z.; Ogbonnaya, F. C. and Baum, M. 2019. Genetic gains in wheat breeding and its role in feeding the world. Crop Breeding Genetics and Genomics. 1:e190005. https://doi.org/10.20900/cbgg20190005.

Tanveer, H.; Singh, V.; Chauhan, M. P.; Singh, H. K. and Yadav, G. C. 2018. Genetic variability, character association and path analysis in wheat (Triticum aestivum L.) over six environments. Trends in Biosciences. 11(8):1799-1803.

Villaseñor-Mir, H. E. 1996. Selección recurrente en una población de trigo de apareamiento aleatorio mediante el uso de la androesterilidad. Tesis de doctor en ciencias. Colegio de Postgraduados, Montecillo, México. 186 p.

Villaseñor-Mir, H. E.; Castillo-González, F.; Rajaram, S.; Espitia-Rangel, E. y Molina-Galan J. D. 2002a. Selección recurrente para rendimiento de grano en una población androestéril de trigo. Agricultura Técnica en México. 28(1):43-52.

Villaseñor-Mir, H. E.; Castillo-González, F.; Espitia-Rangel, E.; Rajaram, S. y Molina-Galan J. D. 2002b. Perspectivas del uso de la androesterilidad en el mejoramiento por selección recurrente de trigo en México. Revista Fitotecnia Mexicana. 25(3):321-326.

Villaseñor-Mir, H. E.; Huerta-Espino, J.; Espitia-Rangel, E.; Hortelano-Santa, R. M. Rodríguez-García, F. y Martínez-Cruz, E. 2014. Genética y estabilidad del mutante androestéril dominante de trigo “Oly”. Revista Mexicana Ciencias Agrícolas. 8(esp):1509-1515.

Villaseñor-Mir, H. E. 2015. Sistema de mejoramiento genético de trigo en México. Revista Mexicana de Ciencias Agrícolas. 11(esp):2183-2189.

Villaseñor-Mir. H. E.; Hortelano-Santa, R. R. Martínez-Cruz, E.; Huerta-Espino, J.; García-León, E. y Espitia-Rangel, E. 2015. Uso de la androesterilidad genética masculina en la reconversión de genotipos para realizar selección recurrente en trigo. Revista Mexicana Ciencias Agrícolas. 11(esp):2177-2182.

Villaseñor-Mir, H. E.; Huerta-Espino, J.; Hortelano-Santa, R. R.; Martínez-Cruz, E.; Espitia-Rangel, E.; Solís-Moya, E.; Osorio-Alcalá, L. y Rodríguez-García, M. F. 2018. Valles F2015: nueva variedad de trigo para siembras de temporal en México. Revista Mexicana Ciencias Agrícolas. 9(6):1315-1321. https://doi.org/https://doi.org/10.29312/remexca.v9i6.1592.

Published

2024-12-11

How to Cite

Díaz-Ceniceros, Huizar Leonardo, Héctor Eduardo Villaseñor-Mir, Ignacio Benítez-Riquelme, Rene Hortelano Santa-Rosa, Yerica Renata Valdez-Rodríguez, and Eliel Martínez-Cruz. 2024. “Genetic Parameters and Response to Selection in the PANDOLY.PABG Wheat Population”. Revista Mexicana De Ciencias Agrícolas 15 (7). México, ME:e3656. https://doi.org/10.29312/remexca.v15i7.3656.

Issue

Section

Articles

Most read articles by the same author(s)