Degradation of reserve starch from the seed of wild and domesticated Phaseolus vulgaris L.

Authors

  • Ma. L. Patricia Vargas-Vázquez Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchan, Texcoco, Estado de México. CP. 56250
  • Ebandro Uscanga-Mortera Posgrado en Botánica-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264
  • Daniel Padilla-Chacón CONAHCyT-Colegio de Postgraduados
  • Heike Vibrans Lindemann Posgrado en Botánica-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264
  • Petra Yáñez-Jiménez Posgrado en Botánica-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264
  • Antonio García-Esteva Posgrado en Botánica-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264

DOI:

https://doi.org/10.29312/remexca.v16i3.3602

Keywords:

beans, germination, reducing sugars, reserve substance

Abstract

Domestication has modified the size and type of seed reserves; this raises the question of whether these modifications have had an impact on metabolism and the mobilization of these reserves during germination and seedling establishment. The research aimed to determine the effect of domestication on cotyledons, embryonal axis and dark-grown seedlings of domesticated and wild beans. In 2019, eight seeds of three improved varieties and three wild collections were germinated at 25 °C, another eight seeds with exposed radicles were sown in grow bags and the seedlings obtained were kept for 14 days in darkness. The germinated seeds and seedlings were dissected into their structures and their dry mass and the concentrations of starch, glucose, fructose and sucrose were determined; likewise, the number of cells and the number of starch granules mm-2 and their dimensions were also determined in cotyledons. The design used was completely randomized with four replications. On average, the improved varieties had 11 and three times more dry matter in cotyledons and embryonal axis compared to wild varieties, and seven, nine and 13 times more dry matter in root, shoot and remnant of cotyledons, respectively. Concentrations of starch, glucose, and sucrose per gram of dry mass were higher in cotyledons from improved varieties; in contrast, concentrations of starch, glucose, and fructose were higher in the embryonal axis of the wild ones. In the root, wild varieties had higher concentrations of starch, fructose, and sucrose, and in the shoot, domesticated ones had more glucose, fructose, and sucrose. Wild varieties had 42% more cells and 30% more starch granules than domesticated ones per unit area. Domestication modifies the composition and mobilization of reserves during germination and seedling establishment.

Downloads

Download data is not yet available.

References

Allaby, R. G. 2020. Domestication syndrome in plants. In: Encyclopedia of Global Archeology. Smith, C. Ed. Springer. New York. 2182-2184 pp. Doi.org/10.1007/978-3-030-30018-0-2416.

Allende-Arrarás, G.; Acero-Godínez, M. G.; Padilla-Ramírez, J. S.; Mayek-Pérez, N. 2006. Comportamiento agronómico y características fisicoquímicas del grano de frijol en Aguascalientes, México. Revista Fitotecnia Mexicana. 29(1):89-93.

Ansari, O.; Chogazardi, H. R.; Sharifzadeh, F. and Nazarli, H. 2012. Seed reserve utilization and seedling growth of treated seeds of mountain rye (Secale montanum) as affected by drought stress. Cercetari Agronomice in Moldova. 45(2):43-48. https://repository.iuls.ro/xmlui/handle/20.500.12811/2297.

Bajaj, R.; Singh, N.; Kaur, A. and Inouchi, N. 2018. Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes: comparative study. Journal of food Science and Technology. 55(9):3799-3808. https://doi.org/10.1007/s13197-018-3342-4.

Bewley, J. D.; Bradford, K. J. H.; Henk, W. M.; Nonogaki, H. 2013. Seeds: physiology of development and germination. Springer Science+Business Media LLC. New York. 444 p.

Carbonero, P.; Iglesias-Fernández, R. and Carbajosa, J. V. 2017. The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. Journal of Experimental Botany. 68(4):871-880. Doi:10.1093/jxb/erw458.

Celis-Velázquez, R.; Peña-Valdivia, C. B.; Trejo-López, C.; Aguirre-Rivera, J.R.: Córdova-Téllez, L. and Carballo-Carballo, A. 2008. Consumo de reservas de la semilla de frijol para la emergencia y desarrollo inicial en diferentes profundidades de siembra. Agronomía Mesoamericana. 19(2):167-177. https://www.redalyc.org/pdf/437/43711425002.pdf.

Cilia-García, M.; Peña-Valdivia, C. B.; Bernal Gracida, L. A.; Yáñez Jiménez, P.; García Esteva A. and Padilla-Chacón, D. 2021. Effects of water restriction on carbohydrates concentration, starch granules size and amylolytic activity in seeds of Phaseolus vulgaris L. and P. acutifolius A. Gray. Botanical Sciences. 99(2):364-376. Doi.org/10.17129/botsci.26476.

Coelho, C. M. M. and Benedito, V. A. 2008. Seed development and reserve compound accumulation in common bean (Phaseolus vulgaris L.). Seed Science Biotechnology. 2(2):42-52.

Di Vittori, V.; Gioia, T.; Rodríguez, M.; Bellucci, E.; Bitochi, E.; Nanni, M.; Attene, G.; Rou, D. and Papa, R. 2019. Convergent evolution of the seed shattering trait. Genes. 10(1):68. Doi:10.3390/genes10010068. 16 p.

Estrada-Gómez, J. A.; Estrada-Trejo, V.; Hernández-Livera, A.; Molina-Moreno, J. C. and Campos-Escudero, A. 2004. OTI una nueva variedad de frijol para el Valle de México. Revista Fitotecnia Mexicana. 27(1):115-116.

Golan, G.; Oksenberg, A. and Peleg, Z. 2015. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication. Journal of Experimental Botany. 66(19):5703-5711. https://doi.org/10.1093/jxb/erv249.

Hu, X. W.; Zhang, R.; Wu, Y. P. and Baskin, C. C. 2017. Seedling tolerance to cotyledon removal varies with seed size: a case of five legume species. Ecology and Evolution. 7(15):5948-5955. Doi.org/10.1002/ece3.3169.

Johansen, D. A. 1940. Plant microtechnique. McGraw Hill Book Company, Inc. London. 530 p.

Lastdrager, J.; Hanson, J. and Smeekens, S. 2014. Sugars signals and the control of plant growth and development. Journal of Experimental Botany. 65(3):799-807. Doi:10.1093/jxb/ert474.

Lépiz-Ildefonso, R.; López-Alcocer, J. J.; Sánchez-González, J. J.; Santacruz-Ruvalcaba, F.; Nuño-Romero, R. y Rodríguez-Guzmán, E. 2010. Características morfológicas de formas cultivadas, silvestres o intermedias de frijol común de hábito trepador. Revista Fitotecnia Mexicana. 33(1):21-28.

Milla, R. and Matesanz, S. 2017. Growing larger with domestication: a matter of physiology, morphology or allocation? Plant Biology. 19(3):475-483. https://doi.org/10.1111/plb.12545.

Mohammadi, H.; Soltani, A.; Sadeghipour, H. R. and Zeinaly, E. 2011. Effects of seed aging on subsequent seed reserve utilization and seedling growth in soybean. International Journal of Plant Production. 5(1):65-70.

Morales-Santos, M. E.; Peña-Valdivia, C. B.; García-Esteva, A.; Aguilar-Benítez, G. and Kohashi-Shibata, J. 2017. Características físicas y de germinación en semillas y plántulas de frijol (Phaseolus vulgaris L.) silvestre, domesticado y su progenie. Agrociencia. 51(1):43-62. https://www.scielo.org.mx/pdf/agro/v51n1/1405-3195-agro-51-01-00043-en.pdf.

Ortega-Delgado, M. L. y Rodríguez-Coquíez, C. 1979. Estudio de carbohidratos en variedades mexicanas de frijol (Phaseolus vulgaris L. y Phaseolus coccineus L.). Agrociencia. 37:33-49.

Pandey, R.; Vijay, P. and Dadlani, M. 2010. Mobilization of seed reserves and environmental control of seed germination. In: Seed Science and Technology. Singhal, N.C. Ed. Kalyani Publishers. New Deli, India. 84-116 pp.

Pritchard, S. L.; Charlton, W. L.; Baker, A. and Graham, I. A. 2002. Germination and storage reserve mobilization are regulated independently in Arabidopsis. The Plant Journal. 31(5):39-647. https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.2002.01376.x.

Punia, S.; Dhull, S. B.; Sandhu, K. S.; Kaur, M. and Purewal, S. S. 2020. Kidney bean (Phaseolus vulgaris) starch: A review. Legume Science. 2(3):e52. https://doi.org/10.1002/ leg3.52.

Roucou, A.; Violle, C.; Fort, F.; Roumet, P.; Ecarnot, M. and Vile, D. 2018. Shifts in plant functional strategies over the course of wheat domestication. Journal Applied Ecology. 55:25-37. Doi.org/10.1111/1365-2664.13029.

Sánchez-Linares, L.; Gavilanes-Ruíz, M.; Díaz-Pontones, D.; Guzmán-Chávez, F.; Calzada-Alejo, V.; Zurita-Villegas, V.; Luna-Loaiza, V.; Moreno-Sánchez, R.; Bernal-Lugo, I. and Sánchez-Nieto, S. 2012. Early carbon mobilization and radicle protrusion in maize germination. Journal of Experimental Botany. 63(12):4513-4526. https://doi.org/10.1093/jxb/ers130.

SAS Institute Inc. 2012. SAS version 9.3. Cary, N.C., USA.

Schneider, A.; Aghamirzaie, D.; Elmarakeby, H.; Poudel, A. N.; Koo, A. J.; Heath, L. S.; Grene, R. and Collakova, E. 2016. Potential targets of viviparous 1/abi 3‐like 1 (val 1) repression in developing Arabidopsis thaliana embryos. The Plant Journal. 85(2):305-319.

Shi, J. and Lai, J. 2015. Patterns of genomics change with crop domestication and breeding. Current Opinion in Plant Biology. 24:47-53. Doi.org/10.1016/j.pbi.2015.01.008.

Shi, J. and Lai, J. 2015. Patterns of genomics change with crop domestication and breeding. Current Opinion in Plant Biology. 24:47-53. https://doi.org/10.1016/j.pbi.2015.01.008.

SigmaPlot Version 14. 2019. Systat Software, Inc., San Jose, California.

Singh, S. P.; Gepts, P. and Debouck, D. G. 1991. Races of common bean (Phaseolus vulgaris, Fabaceae). Economic Botany. 45(3):379-396.

Smýkal, P.; Nelson, M. N.; Berger, J. D. and Von Wettberg, E. J. B. 2018. The impact of genetic changes during crop domestication. Agronomy. 8(7):119-141. Doi.org/10.3390/agronomy8070119.

Vargas-Vázquez, M. L. P.; Uscanga-Mortera, E.; Padilla-Chacón, D.; Vibrans, H.; Kohashi-Shibata, J.; Miranda-Colín, S. y Yáñez-Jiménez, P. 2020. Asignación de biomasa y carbohidratos en semillas y plántulas de Phaseolus coccineus L. domesticado y silvestre. Botanical Sciences. 98(2):366-376. Doi: 10.17129/botsci.2485.

Viola, R. and Davies, H. V. 1992. A microplate reader assay for rapid enzymatic quantification of sugars in potato tubers. Potato Research. 35:55-58. https://link.springer.com/content/pdf/10.1007/BF02357723.pdf.

Wani, I. A.; Sogi, D. S.; Wani, A. A.; Gill, B. S. and Shivhare, U. S. 2010. Physico‐chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. International Journal of Food Science & Technology. 45(10):2176-2185. http://dx.doi.org/10.1111/j.1365-2621.2010.02379.x.

Yamaguchi, J. 1978. Respiration and growth efficiency in relation to crop productivity. Journal of the Faculty of Agriculture, Hokkaido Univ. 59(1):59-129. https://eprints.lib.hokudai.ac.jp/dspace/handle/2115/12920.

Yoshida, H.; Nozaki, K.; Hanashiro, I.; Yagi, F.; Ito, H.; Honma, M.; Matsui, H. and Takeda, Y. 2003. Structure and physicochemical properties of starches from kidney bean seeds at immature, premature and mature stages of development. Carbohydrate Research. 338(5):463-469. Doi.org/10.1016/S0008-6215(02)00489-5.

Published

2025-05-01

How to Cite

Vargas-Vázquez, Ma. L. Patricia, Ebandro Uscanga-Mortera, Daniel Padilla-Chacón, Heike Vibrans Lindemann, Petra Yáñez-Jiménez, and Antonio García-Esteva. 2025. “Degradation of Reserve Starch from the Seed of Wild and Domesticated Phaseolus Vulgaris L”. Revista Mexicana De Ciencias Agrícolas 16 (3). México, ME:e3602. https://doi.org/10.29312/remexca.v16i3.3602.

Issue

Section

Articles

Most read articles by the same author(s)