Evaluation of the popping capacity of amaranth genotypes and genetic parameters

Authors

  • Eduardo Espitia-Rangel Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México. CP. 56250
  • Azalia Lozano-Grande Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México. CP. 56250
  • Miriam J. Aguilar-Delgado Facultad de Ciencias Agrotecnológicas-Universidad Autónoma de Chihuahua. Calle La Presa de la Amistad núm. 2015, Barrio La presa, Ciudad Cuauhtémoc, Chihuahua, México. CP. 31510
  • Miriam G. Valverde-Ramos Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México. CP. 56250
  • Lucila González-Molina Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México. CP. 56250
  • Eliel Martínez-Cruz Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México. CP. 56250

DOI:

https://doi.org/10.29312/remexca.v14i6.3429

Keywords:

Amaranthus, correlations, genetic variability, heritability, popping

Abstract

Currently, there is worldwide interest in taking advantage of the agronomic and nutritional characteristics of superfoods such as amaranth, in Mexico it is consumed popped so it is important to elucidate the factors that influence this capacity for its better use. Therefore, the objective was to evaluate the popping capacity of 12 amaranth genotypes, genetic variability, heritability and the association of industrial quality variables with the popping volume. The experiment was conducted in the localities of Santa Lucía de Prías and Boyeros, State of Mexico and Cuapiaxtla, Tlaxcala in the years 2019 and 2020. The most outstanding genotype in popping volume was Tlahuicole, followed by AGIM, both had the largest increase (6 and 5.93), respectively. It was observed that the variation due to environmental effects was the main source in 4 of the 5 variables studied, such variation is not capitalizable in selection schemes; on the other hand, weight of one thousand grains was the variable that showed the highest variation due to genetic effects (65.96%), which is capitalizable in a selection scheme. The variables seed diameter, popping volume and volume increase presented a variation due to genetic effects between 4.46 and 6.5%, if there is intention to start a selection scheme, germplasm with greater variability in these traits must be included. The significant association between seed diameter and weight of non-popped seed indicates that these traits can be used as selection criteria for popping volume.

Downloads

Download data is not yet available.

References

Aderibigbe, O. R.; Ezekiel, O. O.; Owolade, S. O.; Korese, J. K.; Sturm, B. and Hensel, O. 2022. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: a review. Critical Reviews in Food Science and Nutrition. 62(3):656-669. Doi: 10.1080/10408398.2020.1825323.

Agong, S. G.; and Ayiecho, P. O. 1991. The rate of outcrossing in grain amaranths. USA. Plant Breed. 107(2):156-160. https://doi.org/10.1111/j.1439-0523.1991.tb00544.x. DOI: https://doi.org/10.1111/j.1439-0523.1991.tb00544.x

Aguilar, D. M. J.; Rangel, E. E.; Grande, A. L.; Ramos, M. G. V.; Hernández, L. F. S. y Rodríguez, Y. G. L. 2022. Capacidad de reventado de grano de amaranto (Amaranthus spp.) con perispermo contrastante. Rev. Fitotec. Mex. 45(4):429-429.

Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N. C.; Berger, J.; Siddique, K. H. and Nayyar, H. 2014. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology. 41(11):1148-1167. Doi: 10.1071/FP13340. DOI: https://doi.org/10.1071/FP13340

Bishaw, Z. A.; Niane, A. and Yantai, G. 2007. Quality seed production. In: Yadav S. S. et al. (eds.). Lentil: an ancient crop for modern times. Springer. 349-383 pp. http://ndl.ethernet.edu.et/ bitstream/123456789/71094/1/23.pdf#page=361. DOI: https://doi.org/10.1007/978-1-4020-6313-8_21

Dofing, S. M.; Thomas-Compton, M. A. and Buck, J. S. 1990. Genotype x popping method interaction for expansion volume in popcorn. Crop Sci. 30(1):62-65 https://doi.org/ 10.2135/cropsci1990.0011183X003000010014x. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000010014x

Dornbos, D. L; Müllen, R. E. and Shibes, R. M. 1989. Drought stress effects during seed fill on soybean seed germination and vigor. Crop Sci. 29(4):476-480. https://doi.org/ 10.2135/cropsci1989.0011183X002900020047x. DOI: https://doi.org/10.2135/cropsci1989.0011183X002900020047x

Falconer, D. S. 1984. Introducción a la genética cuantitativa. Ed. CECSA. 14. México. 430 pp. https://www.redalyc.org/pdf/610/61025301.pdf.

Ferreira, D. F.; Demétrio, C. G. B.; Manly, B. F. J.; Machado, A. A. and Vencovsky, R. 2006. Statistical models in agriculture: biometrical methods for evaluating phenotypic stability in plant breeding. Cerne. 12(4):373-388. https://www.redalyc.org/pdf/744/ 74412409.pdf.

Ghassemi, G. K.; Soltani, A. and Atashi, A. 1997. Effect of water limitation in the field on seed quality of maize and sorghum. Seed Sci. Technol. 25(2):321-323. http://www.ajbasweb.com/old/ajbas/2009/1156-1159.pdf.

Grass, L. and Burris, J. S. 1995. Effect of heat during seed development and maturation on wheat (Triticum durum) seed quality. I. Seed germination and seedling vigor. Can. J. Plant Sci. 75(4):821-829. https://doi.org/10.4141/cjps95-138. DOI: https://doi.org/10.4141/cjps95-138

Guerrieri, N. and Cavaletto, M. 2018. Cereals proteins. In: proteins in food processing. 223-244 pp. http://154.68.126.6/library/Food%20Science%20books/batch1/Proteins% 20in%20food%20processing.pdf. DOI: https://doi.org/10.1016/B978-0-08-100722-8.00009-7

Guy, R. 2001. Extrusion cooking technologies and applications. Ed. Woodhead publishing limited and CRC Press LLC. 5-27 pp. https://www.studmed.ru/view/guy-r-extrusion-cooking-technologies-and-applications-0c262cbd934.html. DOI: https://doi.org/10.1201/9781439822944

Haught, C. G.; Lien, R. M.; Hanes, R. E. and Ashman, R. B. 1976. Physical properties of popcorn. Trans. ASAE. 19(1):0168-0171. Doi: 168. 10.1080/096374800426984. DOI: https://doi.org/10.13031/2013.35988

Januszewska, J. K. and Synowiecki, K. J. 2008. Characteristic and suitability of amaranth components in food biotechnology. Biotechnologia. 3(1):89-102.

Joshi, B. D. and Rana, R. S. 1992. Grain amaranths: the future food crop. NBPGR, Shimla Sci. Monogr. Ed. No. 3. 117-119 pp.

Kaya, Y. and Akcura, M. 2014. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol. 34(2):386-393. Doi: http://dx.doi.org/10.1590/fst.2014.0041 DOI: https://doi.org/10.1590/fst.2014.0041

Lovely, B. and Vijayaraghava, K. 2017. Estimates of genetic variability, heritability and genetic advance for yield and yield component traits in ash gourd Benincasa hispida (Thunb.) Cogn. Genotypes, Agric Sci. Digest. 37(4):270-274. Doi: 10.18805/ag.D-4676. DOI: https://doi.org/10.18805/ag.D-4676

Mishra, G.; Joshi, D. C. and Panda, B. K. 2014. Popping and puffing of cereal grains: a review. J. Grain Processing Storage. 1(2):34-46. https://www.researchgate.net/profile/ gayatri-mishra4/publication/283355236-popping-and-puffing-of-cereal-grains-a-review/links/5637441d08aebc004000e0d6/popping-and-puffing-of-cereal-grains-a-review.pdf.

Mustafa, A. F.; Seguin, P. and Gélinas, B. 2011. Chemical composition, dietary fiber, tannins and minerals of grain amaranth genotypes. Inter. J. Food Sci. Nutr. 62(7):750-754. https://doi.org/10.3109/09637486.2011.575770. DOI: https://doi.org/10.3109/09637486.2011.575770

Nath, A.; Chattopadhyay, P. and Majumdar, G. 2007. High temperature short time air puffed ready-to-eat potato snacks: process parameter. J. Food Eng. 80(3):770-78. Doi: 10.1016/j.jfoodeng.2006.07.006. DOI: https://doi.org/10.1016/j.jfoodeng.2006.07.006

Núñez-Limón, D. 2018. Adaptación de índice de flotación para la determinación de la calidad de reventado de amaranto por aire caliente y microondas tesis de maestría. 90 p. http://hdl.handle.net/10521/3287.

Ortiz, T. T.; Argumedo, M. A.; García, P. H.; Meza, V. R.; Bernal, M. R. y Taboada, G. O. R. 2018. Rendimiento y volumen de expansión de grano de variedades mejoradas de amaranto para Valles Altos de Puebla. Rev. Fitotec. Mex. 41(3):291-300. https://doi.org/10.35196/rfm.2018.3.291-300.

Pandey, R. M. 1982. Genetic of agronomic traits in Amaranthus. 14(2):121-129.

Papastylianou, P.; Vlachostergios, D. N.; Dordas, C.; Tigka, E.; Papakaloudis, P.; Kargiotidou, A. and Kostoula, S. 2021. Genotype X environment interaction analysis of faba bean (Vicia faba L.) for biomass and seed yield across different environments. Sustainability. 13(5):1-18. https://doi.org/10.3390/su13052586.

Ruiz, H. V. C.; Legaría, S. J. P.; Sahagún, C. J. y O-Olan, M. 2018. Variabilidad genética en algunas especies cultivadas y silvestres de amaranto. Rev. Mex. Cienc. Agríc. 9(2):405-416. https://doi.org/10.29312/remexca.v9i2.1081. DOI: https://doi.org/10.29312/remexca.v9i2.1081

SAS Institute. 2012. SAS/STAT User’s Guide, Software versión 9.4. Cary, N. C. USA. 4424 p.

Servellón, R. E. 1996. Estimación de parámetros genéticos y de respuestas a la selección en la población de arroz irrigado CNA 1. Agron. Mesoam. 7(2):50-57. Doi: 10.15517/am.v7i2.24759.

Shin, D. H.; Heo, H. J.; Lee, Y. J. and Kim, H. K. 2004. Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. British J. Bio. Sci. 61(1):11-14. https://doi.org/10.1080/09674845.2004.11732639. DOI: https://doi.org/10.1080/09674845.2004.11732639

Tandjung, A. S.; Janaswamy, S.; Chandrasekaran, R.; Aboubacar, A. and Hamaker, B. R. 2005. Role of the pericarp cellulose matrix as a moisture barrier in microwaveable popcorn. Biomacromolecules. 6(3):1654-1660. https://doi.org/10.1021/bm049220l. DOI: https://doi.org/10.1021/bm049220l

Tasiguano, B. L.; Villarreal, C.; Schmiele, M.; y Vernaza, M. G. 2019. Efecto del tiempo de cocción del zapallo (Cucurbita maxima) y la adición de glucosa oxidasa en el aumento de almidón resistente del pan de molde. Información Tecnológica. 30(3):167-178. http://dx.doi.org/10.4067/S0718-07642019000300167.

Trucco, F. and Tranel, P. J. 2011. Amaranthus. In wild crop relatives: genomic and breeding resources vegetables. Ed. 26. 11-21 pp. Doi: 10.1007/978-3-642-20450-0-2. DOI: https://doi.org/10.1007/978-3-642-20450-0_2

Vázquez, C. M. G.; Espitia, E. R. y Márquez, A. R. S. 1988. Potencial de reventado y calidad proteínica del amaranto. In: investigaciones recientes sobre amaranto. Instituto de Geografía. Universidad Nacional Autónoma de México (UNAM). México, DF. 79-86 pp.

Villaseñor, M. H. E.; Martínez Cruz, E.; Santa-Rosa, R. H.; González-González, M.; Zamudio-Colunga, A.; Huerta-Espino, J. y Espitia-Rangel, E. 2017. Variabilidad genética y criterios de selección para calidad industrial de trigos introducidos en condiciones de temporal. Rev. Mex. Cienc. Agríc. 8(3):661-672. DOI: https://doi.org/10.29312/remexca.v8i3.39

Published

2023-08-28

How to Cite

Espitia-Rangel, Eduardo, Azalia Lozano-Grande, Miriam J. Aguilar-Delgado, Miriam G. Valverde-Ramos, Lucila González-Molina, and Eliel Martínez-Cruz. 2023. “Evaluation of the Popping Capacity of Amaranth Genotypes and Genetic Parameters”. Revista Mexicana De Ciencias Agrícolas 14 (6). México, ME:e3429. https://doi.org/10.29312/remexca.v14i6.3429.

Issue

Section

Articles

Most read articles by the same author(s)