Impacts of climate change on corn production in Mexico
DOI:
https://doi.org/10.29312/remexca.v15i1.3327Keywords:
Zea mays L., extreme events, food security, mitigation and adaptation, vulnerabilityAbstract
Anthropogenic activities have added enough to cause important alterations in the climate at a global level; in the last 20 years, a phenomenon of extreme characteristics called ‘climate change’ has worsened, which has been responsible for causing climate variability, the level of affectation of which extends to all geographical scales. This research was carried out in 2022 with the aim of knowing the impacts of climate change on the productive system of the corn crop in Mexico, given its great nutritional, cultural, and economic relevance. It describes the climate variability and extreme events that occur in Mexico and that in some way have a direct relationship with corn production, such as precipitation, temperature, frosts, hailstorms, droughts, and floods. Worldwide, Mexico stands out in the first places in production and consumption of corn; the current population exceeds 126 million people, and it is a condition that manifests a great demand, having to make a strong export of the grain year after year, showing the unsustainability of the country’s food security. This situation is aggravated when climate change and climate variability directly affect the most important requirements for the establishment of a crop, and that directly affect all stages of growth and development, presenting a decrease in current and future yield.
Downloads
References
Abbass, K.; Qasim, M. Z.; Song, H.; Murshed, M.; Mahmood, H. and Younis, I. 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 29(28):42539-42559. https://doi.org/10.1007/ s11356-022-19718-6.
Adeagbo, O. A.; Ojo, T. O. and Adetoro, A. A. 2021. Understanding the determinants of climate change adaptation strategies among smallholder maize farmers in South-west, Nigeria. Heliyon. 7(2):1-10. https://doi.org/10.1016/j.heliyon.2021.e06231.
Arce-Romero, A. R.; Monterroso-Rivas, A. I.; Gómez-Díaz, J. D. and Palacios-Mendoza, M. A. 2018. Potential yields of maize and barley with climate change scenarios and adaptive actions in two sites in Mexico. Advances in Intelligent Systems and Computing. 687(1):197-208. https://doi.org/10.1007/978-3-319-70187-5-15.
Baum, M. E.; Licht, M. A.; Huber, I. and Archontoulis, S. V. 2020. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 119(1):1-11. https://doi.org/10.1016/j.eja.2020.126101.
Bedeke, S.; Vanhove, W.; Gezahegn, M.; Natarajan, K. and Van Damme, P. 2019. Adoption of climate change adaptation strategies by maize-dependent smallholders in Ethiopia. NJAS-Wageningen J. Life Sci. 88(1):96-104. https://doi.org/10.1016/j.njas.2018.09.001.
Çakir, R. 2004. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89(1):1-16. https://doi.org/10.1016 /j.fcr.2004.01.005.
CENAPRED. 2014. Centro Nacional de Prevención de Desastres. Características del impacto socioeconómico de los principales desastres ocurridos en México. México, DF.
CENAPRED. 2020. Centro Nacional de Prevención de Desastres. Características del impacto socioeconómico de los principales desastres ocurridos en México. México, DF.
CONAGUA. 2022. Resúmenes mensuales de temperaturas y lluvia. https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias.
CONAPO. 2019. Consejo Nacional de Población. Secretaría de Gobernación. Colección. Proyecciones de la población de México y las entidades federativas 2016-2050 República Mexicana. Ciudad de México, México.
Cuervo-Robayo, A. P.; Ureta, C.; Gómez-Albores, M. A.; Meneses-Mosquera, A. K.; Téllez-Valdés, O. and Martínez-Meyer, E. 2020. One hundred years of climate change in Mexico. PLoS ONE. 15(7):1-19. https://doi.org/10.1371/journal. pone.0209808.
FAO. 2017. Food and Agriculture Organization of the United Nations. The future of food and agriculture-Trends and challenges. Rome, Italy. ISBN: 978-92-5-109551-5. https://www.fao.org/3/i6583e/i6583e.pdf.
FAO. 2023. Food and Agriculture Organization of the United Nations. FAOSTAT-Agriculture Database. https://www.fao.org/faostat/en/#data/QCL. 22/09/2023.
Frieler, K.; Schauberger, B.; Arneth, A.; Balkovic, J.; Chryssanthacopoulos, J.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; Olin, S.; Pugh, A. M. T.; Schaphoff, S.; Schewe, J.; Schmid, E.; Warszawski, L. and Levermann, A. 2017. Understanding the weather signal in national crop-yield variability. Earth’s future. 5(6):605-616. https://doi.org/10.1002/2016EF000525.
Giller, K. E.; Delaune, T. and Silva, J. V. 2021. The future of farming: Who will produce our food? Food Sec. 13(5):1073-1099. https://doi.org/10.1007/s12571-021-01184-6.
González-Celada, G.; Ríos, N.; Benegas-Negri, L. and Argotty-Benavides, F. 2021. Impact of the climate change and the land use/land cover change in the hydrological and water erosion response in the Qui scab river subbasin. Tecnología y Ciencias del Agua. 12(6):328-362. https://doi.org/10.24850/J-TYCA-2021-06-08.
Harkness, C.; Semenov, M. A.; Areal, F.; Senapati, N.; Trnka, M.; Balek, J. and Bishop, J. 2020. Adverse weather conditions for UK wheat production under climate change. Agricultural and Forest Meteorology. 282-283(1):1-13. https://doi.org/10.1016/j.agrformet.2019.107862.
INEGI. 2020. Instituto Nacional de Estadística Geografía e Informática. Censo de Población y Vivienda 2020. https://www.inegi.org.mx/programas/ccpv/2020/.
IPCC. 2019. Grupo Intergubernamental de Expertos sobre el Cambio Climático. Calentamiento global de 1.5 °C. https://www.riob.org/es/documentos/ calentamiento-global-de-15-degc.
IPCC. 2021. Grupo Intergubernamental de Expertos sobre el Cambio Climático. Climate change 2021: The physical science basis. In: contribution of working group i to the sixth assessment report of the Intergovernmental Panel on Climate Change Ed. Masson-Delmotte, V. https://doi.org/10.1017/9781009157896.
IPCC. 2022. Grupo Intergubernamental de Expertos sobre el Cambio Climático. WGI Interactive Atlas: Regional information. de Intergovernmental Panel on Climate Change Sitio web: https://interactive-atlas.ipcc.ch/regionalinformation#ey J0eXBlIjoiQVRMQVMiLCJjb21tb25zIjp7ImxhdCI6OTc3MiwibG5nIjo0MDA2OTIsInpv.
Kang, Y.; Ma, X. and Khan, S. 2013. Predicting climate change impacts on maize crop productivity and water use efficiency in the loess plateau. Irrigation and Drainage. 63(3):394-404. https://doi.org/10.1002/ird.1799.
Leng, G. 2019. Uncertainty in assessing temperature impact on U.S. maize yield under global warming: the role of compounding precipitation effect. J. Geo. Res. Atmos. 124(12):6238–6246. https://doi.org/10.1029/2018JD029996.
Lizaso, J. I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J. A.; Lorite, I. J.; Sánchez, D.; García, E. and Rodríguez, A. 2018. Impact of high temperatures in maize: phenology and yield components. Field Crops Res. 216(1):129-140. https://doi.org/10.1016/j.fcr.2017.11.013.
Lobato-Sánchez, R. y Altamirano-Carmen, M. Á. 2017. Detección de la tendencia local del cambio de la temperatura en México. Tecnología y Ciencias del Agua. 8(6):101-116. https://doi.org/10.24850/j-tyca-2017-06-07.
Lv, Z.; Li, F. and Lu, G. 2020. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitigation and adaptation strategies for global change. 25(1):87-106. https://doi.org/10.1007/s11027-019-09861-w.
Mastachi-Loza, C. A.; Becerril-Piña, R.; Gómez-Albores, M. A.; Díaz-Delgado, C.; Romero-Contreras, A. T.; Garcia-Aragon, J. A. and Vizcarra-Bordi, I. 2016. Regional analysis of climate variability at three-time scales and its effect on rainfed maize production in the upper lerma river basin, Mexico. Agric. Ecosyst. Environ. 225(1):1-11. https://doi.org/10.1016/j.agee.2016.03.041.
Mills, G.; Sharps, K.; Simpson, D.; Pleijel, H.; Frei, M.; Burkey, K.; Emberson, L.; Uddling, J.; Broberg, M.; Feng, Z.; Kobayashi, K. and Agrawal, M. 2018. Closing the global ozone yield gap: quantification and benefits for multitrees tolerance. Global Change Biology. 24(10):4869-4893. https://doi.org/10.1111/gcb.14381.
Monterroso, A. and Conde, C. 2015. Exposure to climate and climate change in Mexico. Geomatics, Natural Hazards and Risk. 6(4):272-288. https://doi.org/10.1080/ 19475705.2013.847867.
Murray-Tortarolo, G. N.; Jaramillo, V. J. and Larsen, J. 2018. Food security and climate change: the case of rainfed maize production in Mexico. Agricultural and Forest Meteorology. 253-254(1):124-131. https://doi.org/10.1016/j.agrformet. 2018.02.011.
Nandan, R.; Woo, D. K.; Kumar, P. and Adinarayana, J. 2021. Impact of irrigation scheduling methods on corn yield under climate change. Agricultural Water Management. 255(1):1-9. https://doi.org/10.1016/j.agwat.2021.106990.
Noein, B. and Soleymani, A. 2022. Corn (Zea mays L.) physiology and yield affected by plant growth regulators under drought stress. Journal of Plant Growth Regulation. 41(2):672–681. https://doi.org/10.1007/s00344-021-10332-3.
Ochieng, J.; Kirimi, L. and Mathenge, M. 2016. Effects of climate variability and change on agricultural production: the case of small-scale farmers in Kenya. NJAS Wageningen Journal of Life Sciences. 77:71-78. https://doi.org/10.1016/j.njas. 2016.03.005
ONU. 2016. Organización de las Naciones Unidas. Agenda 2030 y los objetivos de desarrollo sostenible. una oportunidad para américa latina y el caribe. Santiago, Chile. CEPAL. https://www.cedhnl.org.mx/bs/vih/secciones/planes-y-programas/ Agenda-2030-y-los-ODS.pdf. 9-13 pp.
Ortiz-Rosales, M. Á. y Ramírez-Abarca, O. 2017. Proveedores e industrias de destino de maíz en México. Agricultura, Sociedad y Desarrollo. 14(1):61-82. http://www.scielo.org.mx/scielo.php?script=sci-arttextypid=S187054722017000 100061ylng=esytlng=es.
PINCC. 2022. Programa de Investigación en Cambio Climático. Fue el cuarto año más caluroso en México del que se tenga registro. Programa de investigación en cambio climático, Instituto de Ciencias de la Atmósfera y Cambio Climático-Universidad Nacional Autónoma de México (UNAM). https://www.pincc.unam.mx/ 2021-fue-el-cuarto-ano-mas-caluroso-en-mexico-del-que-se-tenga-registro/.
Reyes, S. E.; Bautista M. F. y García, S. J. A. 2022. Análisis del mercado de maíz en México desde una perspectiva de precios. Acta Universitaria. 32(1):1-16. Doi. http://doi.org/10.15174.au.2022.3265.
Richardson, K. J.; Lewis, K. H.; Krishnamurthy, P. K.; Kent, C.; Wiltshire, A. J. and Hanlon, H. M. 2018. Food security outcomes under a changing climate: impacts of mitigation and adaptation on vulnerability to food insecurity. Climatic Change. 147(1-2):327-341. https://doi.org/10.1007/s10584-018-2137-y
Ruiz, C. J.; Medina, G. G.; González, E. D.; Ramírez, D. J.; Flores, L. H.; Ruiz, C. J.; Manríquez, O. J.; Zarazúa, V. P.; Díaz, P. G.; Ramírez, O. G. y Mora, O. C. 2011. Cambio climático y sus implicaciones en cinco zonas productoras de maíz en México. Revista Mexicana de Ciencias Agrícolas. 2(1):309-323. https://www.redalyc.org/articulo.oa?id=263121431011.
Ruiz-Corral, J. A.; Ramírez-Díaz, J. L.; Hernández-Casillas, J. M.; Aragón-Cuevas, F.; Sánchez-Gonzáles, J. de J.; Ortega-Corona, A.; Medina-García, G. y Ramírez-Ojeda, G. 2011. Razas mexicanas de maíz como fuente de germoplasma para la adaptación al cambio climático. Rev. Mex. Cienc. Agríc. 2(1):365-379.
Santos, R. M. and Bakhshoodeh, R. 2021. Climate change global warming climate emergency versus general climate research: comparative bibliometric trends of publications. Heliyon. 7(11):1-11. https://doi.org/10.1016/j.heliyon.2021.e08219.
SIAP. 2020. Servicio de Información Agroalimentaria y Pesquera. Avance de siembras y cosechas resumen por estado. http://infosiap.siap.gob.mx:8080/agricola-siap-gobmx/resumenproducto.do.
Skendžić, S.; Zovko, M.; Živković, I. P.; Lešić, V. and Lemić, D. 2021. The impact of climate change on agricultural insect pests. Insects. 12(5):1-25. doi:10.3390/insects12050440.
Ureta, C.; González, E. J.; Espinosa, A.; Trueba, A.; Piñeyro-Nelson, A. and Álvarez-Buylla, E. R. 2020. Maize yield in Mexico under climate change. Agricultural Systems. 177(1):1-11. https://doi.org/10.1016/j.agsy.2019.102697.
Villalobos-González, A.; López-Castañeda, C.; Miranda-Colín, S.; Aguilar-Rincón, V. H.; y López-Hernández, M. B. 2017. Relaciones hídricas en maíces de Valles Altos de la Mesa Central de México en condiciones de sequía y fertilización nitrogenada. Revista Mexicana de Ciencias Agrícolas. 7(7):1651-1665. https://doi.org/10.29312/ remexca.v7i7.157.
Wang, Y.; Wang, C. and Zhang, Q. 2021. Synergistic effects of climatic factors and drought on maize yield in the east of northwest China against the background of climate change. Theoretical and Applied Climatology. 143(3-4):1017-1033. https://doi.org/10.1007/s00704-020-03457-0.
Welikhe, P.; Essamuah-Quansah, J.; Boote, K.; Asseng, S. and El Afandi, G. 2016. Impact of climate change on corn yields in alabama. Professional Agricultural Workers J. 4(1):1-14.
Wilson, A. B.; Avila-Diaz, A.; Oliveira, L.; Zuluga, C. F. and Mark, B. 2022. Climate extremes and their impacts on agriculture across the eastern corn belt region of the U.S. Weather and climate extremes. 37(1):1-22. https://doi.org/10.1016/j.wace. 2022.100467.
Ye, Q.; Lin, X.; Adee, E.; Min, D.; Assefa, M. Y.; Brien, D. and Ciampitti, I. A. 2017. Evaluation of climatic variables as yield-limiting factors for maize in Kansas. Inter. J. Climatol. 37(1):464-475. https://doi.org/10.1002/joc.5015.
Zúñiga, E. and Magaña, V. 2018. Vulnerability and risk to intense rainfall in Mexico. the effect of land use cover change. Investigaciones Geográficas. 95(1):1-18. https://doi.org/10.14350/rig.59465.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.