Carbon fertilization in medium-tech greenhouses

Authors

  • Enrique Rico-García Departamento de Biosistemas-Facultad de Ingeniería-Universidad Autónoma de Querétaro. Querétaro, México. CP. 76010. Tel. 442 1921200, ext. 6023
  • Adrián Esteban Ortega-Torres Departamento de Biosistemas-Facultad de Ingeniería-Universidad Autónoma de Querétaro. Querétaro, México. CP. 76010. Tel. 442 1921200, ext. 6023
  • Adán Mercado-Luna Departamento de Biosistemas-Facultad de Ingeniería-Universidad Autónoma de Querétaro. Querétaro, México. CP. 76010. Tel. 442 1921200, ext. 6023.
  • Ramón Gerardo Guevara-González Departamento de Biosistemas-Facultad de Ingeniería-Universidad Autónoma de Querétaro. Querétaro, México. CP. 76010. Tel. 442 1921200, ext. 6023.
  • Irineo Torres-Pacheco Departamento de Biosistemas-Facultad de Ingeniería-Universidad Autónoma de Querétaro. Querétaro, México. CP. 76010. Tel. 442 1921200, ext. 6023.

DOI:

https://doi.org/10.29312/remexca.v16i1.3314

Keywords:

adequate internal climate, CO2 injection, crop productivity

Abstract

Carbon fertilization is used in protected agriculture to increase crop productivity. Medium-tech greenhouses do not have climate control equipment other than the electric or manual opening of windows. In these greenhouses, in general, the values of temperature and relative humidity of the air are not ideal for the photosynthesis of the crop in the daytime period between 10:00 am and dusk. The study of a climate database of a medium-tech greenhouse showed that, in the mornings, there are suitable climate conditions for the photosynthesis of the crop. In this work, an experiment was carried out with two medium-tech greenhouses of 108 m2; tomatoes (Solanum lycopersicum) and cucumbers (Cucumis sativus) were grown in both greenhouses; one received carbon fertilization between 7:30 and 9:00 h, whereas the other was maintained with traditional management, without CO2 injection. This study aimed to evaluate the effect of carbon fertilization on crop productivity, expecting significant increases. The results showed increases in weekly productivity of 28% to 59% in tomatoes. There were no significant differences in productivity for cucumbers.

Downloads

Download data is not yet available.

References

Bao, J.; Lu, W.; Zhao, J. and Bi, X. T. 2018. Greenhouses for CO2 sequestration from atmosphere. Carbon Resources Conversion. 1(2):183-190. https://doi.org/10.1016/j.crcon.2018.08.002.

de Anda, J. y Shear, H. 2017. La agricultura protegida en México. Tecnoagro Núm. 117. https://tecnoagro.com.mx/no.-117/la-agricultura-protegida-en-mexico.

Hao, P.; Qiu, C.; Ding, G.; Vincze, E.; Zhang, G.; Zhang, Y. and Wu, F. 2020. Agriculture organic wastes fermentation CO2 enrichment in greenhouse and the fermentation residues improve growth, yield and fruit quality in tomato. Journal of Cleaner Production. 275 pp. https://doi.org/10.1016/j.jclepro.2020.123885.

Juárez-López, P.; Bugarín-Montoya, R.; Castro-Brindis, R.; Sánchez-Monteon, A. L.; Cruz-Crespo, E.; Juárez-Rosete, C. R.; Alejo-Santiago, G. y Balois-Morales, R. 2011. Estructuras utilizadas en la agricultura protegida. Revista Fuente 3(8):21-27. http://dspace.uan.mx:8080/handle/123456789/567.

Martzopoulou, A.; Vafiadis, D. and Fragos, V. P. 2020. Energy gains in passive solar greenhouses due to CO2 enrichment. Energies. 13(5):1-16. https://doi.org/10.3390/en13051242.

Mortensen, L. M. 1987. CO2 enrichment in greenhouses. Crop responses. Scientia Horticulturae. 33(1-2):1-25. https://www.sciencedirect.com/science/article/pii/0304423887900288.

Oreggioni, G. D.; Luberti, M. and Tassou, S. A. 2019. Agricultural greenhouse CO2 utilization in anaerobic-digestion-based biomethane production plants: a techno-economic and environmental assessment and comparison with CO2 geological storage. Applied Energy. 242(15):1753-1766. https://doi.org/10.1016/j.apenergy.2019.03.045.

Reinoso-Moreno, J. V.; Pinna-Hernández, M. G.; Sánchez-Molina, J. A.; Fernández-Fernández, M. D.; López-Hernández, J. C. and Acién-Fernández, F. G. 2024. Carbon is captured from biomass flue gases for CO2 enrichment in greenhouses. Helyion. 10(1):e23274. https://doi.org/10.1016/j.heliyon.2023.e23274.

Rico-García, E.; Hernández-Hernández, F.; Soto-Zarazúa, G. M. and Herrera-Ruiz. G. 2009. Two new methods for the estimation of leaf area using digital photography. International Journal of Agriculture and Biology. 11(4):397-400. http://www.fspublishers.org/published-papers/26864-pdf.

Sánchez-Guerrero, M. C.; Lorenzo, P.; Medrano, E.; Castilla, N.; Soriano, T. and Baille, A. 2005. Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agricultural and Forest Meteorology. 132(2-4):244-252. https://doi.org/10.1016/j.agrformet.2005.07.014.

Schmidt, U.; Huber, C. and Rocksch, T. 2008. Evaluation of combined application of fog system and CO2 enrichment in greenhouses by using phytomonitoring data. Acta Horticulturae. 801:1301-1308. https://www.actahort.org/books/801/801-159.htm.

Xin, M. L.; Shuang, L.; Yue, L. and Qinzhu, G. 2015. Effectiveness of gaseous CO2 fertilizer application in China’s greenhouses between 1982 and 2010. Journal of CO2 utilization. 11:63-66. https://doi.org/10.1016/j.jcou.2015.01.005.

Published

2025-03-21

How to Cite

Enrique, Adrián Esteban Ortega-Torres, Adán Mercado-Luna, Ramón Gerardo Guevara-González, and Irineo Torres-Pacheco. 2025. “Carbon Fertilization in Medium-Tech Greenhouses”. Revista Mexicana De Ciencias Agrícolas 16 (1). México, ME:e3314. https://doi.org/10.29312/remexca.v16i1.3314.

Issue

Section

Articles

Most read articles by the same author(s)