Phenotypic plasticity of coffee trees in an altitudinal gradient of the Frailesca region of Chiapas

Authors

  • Emanuel Romero José Maestría en Ciencias Agroforestales-Facultad de Ingeniería, Sede Villa Corzo-Universidad de Ciencias y Artes de Chiapas
  • Luis Alfredo Rodríguez Larramendi Cuerpo Académico Agroforestería y Desarrollo Rural-Facultad de Ingeniería-Universidad de Ciencias y Artes de Chiapas
  • Miguel Ángel Salas Marina Cuerpo Académico Agroforestería y Desarrollo Rural-Facultad de Ingeniería-Universidad de Ciencias y Artes de Chiapas
  • Alder Gordillo Curiel Cuerpo Académico Agroforestería y Desarrollo Rural-Facultad de Ingeniería-Universidad de Ciencias y Artes de Chiapas

DOI:

https://doi.org/10.29312/remexca.v15i1.3289

Keywords:

Coffea arabica L., functional traits, microclimate

Abstract

The cultivation of coffee in agroecosystems atypical for this species affects its growth due to the effect of climate, mainly temperature and solar radiation. In 2021, variations in the microclimate, functional traits, and phenotypic plasticity of the coffee tree were studied in two altitudinal gradients of the Frailesca region, Chiapas. Plant height, stem diameter, length of orthotropic internodes, branches per plant, length of plagiotropic branches, total nodes per plant, leaves per plant, specific leaf mass, and specific leaf area were recorded in two shaded coffee plantations located at 600 and 1 000 masl. Diurnal variations in photosynthetically active radiation, air temperature, and relative humidity were recorded. Photosynthetically active radiation, air temperature, and leaves per plant were greater at 1 000 masl due to the greater amount of shade existing in the coffee plantation located at 600 masl. The photosynthetically active and incident radiation at both altitudes was below the points of light compensation and saturation reported for this crop, while air temperature, leaves per plant, and RH were outside the recommended range for the coffee tree. Stem diameter, branches per plant, length of plagiotropic branches, specific leaf mass, and specific leaf area were higher in coffee trees grown at 1 000 masl. It is concluded that the Costa Rica 95 variety showed phenotypic plasticity in response to the altitudinal gradient reflected in increases in the relative distance plasticity index of stem diameter and specific leaf mass.

Downloads

Download data is not yet available.

References

Andrade, H. J. y Zapata, P. C. 2019. Desempeño ecofisiológico de café (Coffea arabica L.) cv. Castillo a la sombra en San Juan de Rioseco, Colombia. Rev. Inv, Agrar. Amb. 11(1):15-27. Doi:10.22490/21456453.2915.

Bernado, W. P.; Rakocevic, M.; Santos, A. R.; Ruas, K. F.; Baroni, D. F.; Abraham, A. C.; Pireda, S.; Oliveira, D. S.; Da C. M. and Ramalho, J. C. 2021. Biomass and leaf acclimations to ultraviolet solar radiation in juvenile plants of Coffea arabica and C. Canephora. Plants. 10(4):640. Doi:10.3390/plants10040640.

Bote, A. D.; Zana, Z.; Ocho, F. L. and Vos, J. 2018. Analysis of coffee (Coffea arabica L.) performance in relation to radiation level and rate of nitrogen supply II. Uptake and distribution of nitrogen, leaf photosynthesis and first bean yields. Eur. J. Agron. Elsevier. 92:107-114. Doi:10.1016/j.eja.2017.10.006.

Carvajal, F. J. 1984. Cafeto: cultivo y fertilización. Instituto Internacional de la Potasa. 2. Suiza. 3-254 pp.

Cavatte, P. C.; Oliveira, Á. A. G.; Morais, L. E.; Martins, S. C. V.; Sanglard, L. M. V. P. and DaMatta, F. M. 2012. Could shading reduce the negative impacts of drought on coffee? A morphophysiological analysis. Physiologia Plantarum. 144(2):111-122. Doi:10.1111/j.1399-3054.2011.01525.x.

DaMatta, F. M.; Ronchi, C. P.; Sales, E. F. and Araújo, J. B. S. 2007. O café conilon em sistemas agroflorestais. In: Ferrão, R. G.; Fonseca, A. F. A.; Bragança, S. M.; Ferrão, M. A. G. and De Muner, L. H. Ed. Café Conilon. 377-389 pp. Seag/Incaper, Vitória

Fahl, J. I.; Carelli, M. L. C.; Vega, J. and Magalhães, A. C. 1994. Nitrogen and irradiance levels affecting net photosynthesis and growth of young coffee plants (Coffea arabica L.). J. Hortic. Sci. 69(1):161-169. Doi:10.1080/14620316.1994.11515262.

Franco, C. M. 1982. Efeito da temperatura do solo e suas variações no crescimento do cafeeiro e o acúmulo de nutrientes nas partes aéreas do cafeeiro. Turrialba. 32(3):249-255.

Garnica, J. y Saldarriaga, S. 2015. Diversidad funcional en un gradiente altitudinal del complejo de páramos Sumapaz-Cruz Verde. Tesis de grado. Universidad Distrital Francisco José de Caldas. 73 p.

Gómez-Tosca, E. G.; Alvarado-Castillo, G.; Benítez, G.; Cerdán-Cabrera, C. R. y Estrada-Contreras, I. 2021. Distribución potencial actual y futura de Coffea arabica L. en la subcuenca Decozalapa, Veracruz, México. Madera y Bosques. 27(2):e2722070. Doi:10.21829/myb.2021.2722070.

Gordillo, C. A.; Rodríguez, L. A; Salas, M. A, and Rosales, M. A. 2020. Effect of salicylic acid on the germination and initial growth of coffee (Coffea arabica L. var. Costa Rica 95). Revista de la Facultad de Agronomía-Universidad del Zulia. 38(1):43-59. Doi:10.47280/RevFacAgron(LUZ).v38.n1.03.

Latifah, S.; Muhdi, M; Purwoko, A.; Tanjung, E. 2018. Estimation of aboveground tree biomass Toona sureni and Coffea arabica in agroforestry system of Simalungun, North Sumatra, Indonesia. Biodiversitas. 19(2):590-595. Doi:10.13057/biodiv/ d190239.

Lisnawati, A.; Lahjie, A. M.; Simarangkir, B. D. A. S.; Yusuf, S. and Ruslim, Y. 2017. Agroforestry system biodiversity of Arabica coffee cultivation in North Toraja District, South Sulawesi, Indonesia. Bio. J. Biol. Div. 18(2):741-751. Doi:10.13057/biodiv/d180243.

Malhi, G. S.; Kaur, M. and Kaushik, P. 2021. Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability, Switzerland. 13(3):1-21. Doi:10.3390/su13031318.

Matos, F. S.; Wolfgramm, R.; Gonçalves, F. V.; Cavatte, P. C.; Ventrella, M. C. and DaMatta, F. M. 2009. Phenotypic plasticity in response to light in the coffee tree. Environ. Exp. Bot. 67(2):421-427. Doi:10.1016/j.envexpbot.2009.06.018.

Mofatto, L. S.; Carneiro, F. de A.; Vieira, N. G.; Duarte, K. E.; Vidal, R. O.; Alekcevetch, J. C.; Cotta, M. G.; Verdeil, J. L.; Lapeyre-Montes, F.; Lartaud, M. 2016. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology. 16(1):2-18. Doi:10.1186/s12870-016-0777-5.

Nicotra, A. B.; Atkin, O. K.; Bonser, S. P.; Davidson, A. M.; Finnegan, E. J.; Mathesius, U.; Poot, P.; Purugganan, M. D.; Richards, C. L.; Valladares, F. and Van Kleunen, M. 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Sci. 15(12):684-692.

Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M. and Schroth, G. 2015. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. Plos One. 10(4):1-13. Doi:10.1371/journal.pone.0124155.

Rahn, E.; Vaast, P.; Läderach, P.; Van Asten, P.; Jassogne, L. and Ghazoul, J. 2018. Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecological Modelling. 371:76-89. Doi:10.1016/j.ecolmodel. 2018.01.009.

Rodríguez-Larramendi, L.; Valdés, C. R.; Verdecia, M. J.; Arias, B. L.; Medina, R. R.; Velasco, B. E. 2001. Growth, relative water content, transpiration and photosynthetic pigment content in coffee trees (Coffea arabica L.) growing at different sunlight regimes. Cultivos Tropicales. 22(4):37-41.

Rodríguez-Larramendi, L. A. R.; Hernández, F. G.; Castro, H. G.; Flores, M. F.; Castañeda, J. C. G. y Ruiz, R. P. 2016. Anatomía foliar relacionada con la ruta fotosintética en árboles de café (Coffea arabica L., var. Caturra Rojo) expuestos a diferentes niveles de radiación solar en la Sierra Maestra, Granma, Cuba. Acta Agron. 65(3):248-254. Doi:10.15446/acag.v65n3.46731.

Rodríguez, N. F.; Cavatte, P. C.; Silva, P. E.; Martins, S. C.; Morais, L. E.; Medina, E. F. and DaMatta, F. M. 2012. Physiological and biochemical abilities of robusta coffee leaves for acclimation to cope with temporal changes in light availability. Physiologia Plantarum. 149(1):45-55.

StatSoft, Inc. 2007. Statistica. Data analysis software system. Version 8.0. www.statsoft.com.

Taiz, L. y Zeiger, E. 2007. Fisiología vegetal. Universitat Jaume I. 1 265 p.

Valladares, F.; Gianoli, E. and Gómez, J. M. 2007. Ecological limits to plant phenotypic plasticity. New Phytologist. 176(4):749-763. Doi:10.1111/j.1469-8137.2007. 02275.x.

Valladares, F.; Sánchez-Gómez, D.; Zavala, M. A. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94(6):1103-1116. https://doi.org/10.1016/j. envexpbot.2009.06.018.

Zelada, H. y Reynel, C. 2019. Estimación de rasgos funcionales en dos especies arbóreas de una gradiente altitudinal tropical en el Centro de Perú. Revista Forestal de Perú. 34(2):132-143. Doi:10.21704/rfp.v34i2.1323.

Published

2024-01-31

How to Cite

Romero José, Emanuel, Luis Alfredo Rodríguez Larramendi, Miguel Ángel Salas Marina, and Alder Gordillo Curiel. 2024. “Phenotypic Plasticity of Coffee Trees in an Altitudinal Gradient of the Frailesca Region of Chiapas”. Revista Mexicana De Ciencias Agrícolas 15 (1). México, ME:e3289. https://doi.org/10.29312/remexca.v15i1.3289.

Issue

Section

Articles

Most read articles by the same author(s)