Application of nanomolybdenum in beans and its impact on nitrogen efficiency

Authors

  • Ezequiel Muñoz-Márquez Food and Development Research Center AC. Av. 4 south 3820, Fracc. Winners of the Desert, Delicias City, Chihuahua, Mexico. ZC. 33089. Tel. 639 4740400
  • Juan Manuel Soto-Parra Autonomous University of Chihuahua-Faculty of Agrotechnological Sciences. Pascual Orozco Av., s/n, Campus 1, Santo Niño, Chihuahua, Mexico. Tel. 614 4391844
  • Ramona Pérez-Leal Autonomous University of Chihuahua-Faculty of Agrotechnological Sciences. Pascual Orozco Av., s/n, Campus 1, Santo Niño, Chihuahua, Mexico. Tel. 614 4391844
  • Rosa María Yánez-Muñoz Autonomous University of Chihuahua-Faculty of Agrotechnological Sciences. Pascual Orozco Av., s/n, Campus 1, Santo Niño, Chihuahua, Mexico. Tel. 614 4391844
  • Linda Citlalli Noperi-Mosqueda Autonomous University of Chihuahua-Faculty of Agrotechnological Sciences. Pascual Orozco Av., s/n, Campus 1, Santo Niño, Chihuahua, Mexico. Tel. 614 4391844
  • Esteban Sánchez-Chávez Food and Development Research Center AC. Av. 4 south 3820, Fracc. Winners of the Desert, Delicias City, Chihuahua, Mexico. ZC. 33089. Tel. 639 4740400

DOI:

https://doi.org/10.29312/remexca.v13i28.3286

Keywords:

Phaseolus vulgaris L., crop nutrition, micronutrients, nanofertilizers

Abstract

The efficient use of nitrogen is a technique used to improve yields without the excessive addition of nitrogen fertilizers, in the same way, the use of nanofertilizers is an alternative to solve nutritional problems with greater efficiency and precision, both with the purpose of increasing crop productivity. Therefore, the objective of this study was to evaluate the foliar application of molybdenum (Mo) nanofertilizer combined with the edaphic fertilization of NH4NO3, on the total biomass, yield and efficiency in snap beans. The plants were germinated and grown under controlled conditions in an experimental greenhouse in Lázaro Cárdenas, Meoqui, Chihuahua, Mexico in September 2020 and irrigated with nutrient solution. The treatments consisted of the foliar application of four doses of the molybdenum nanofertilizer BROADACRE (0, 5, 10 and 20 ppm of Mo), complemented by the edaphic application of four doses of nitrogen in the form of NH4NO3 (0, 3, 6 and 12 mM of N). The results obtained indicate that the doses of 10 ppm of Mo and 6 mM of N favored the accumulation of biomass and the highest yield per plant; it is important to note that the highest efficiency was achieved with the doses of 5 ppm of Mo and 3 mM of N. Finally, it is concluded that the application of NanoMo increases the efficiency of nitrogen use, being able to reduce excessive applications of nitrogen fertilizers, without affecting the yield of snap beans.

Downloads

Download data is not yet available.

References

Arenas, J. Y. R.; Escalante, E. J. A. S.; Aguilar, C. C.; Rodríguez, G. M. T. y Sosa, M. E. 2021. Rentabilidad y rendimiento de girasol en función del tipo de suelo, nitrógeno y biofertilizante. Biotecnia. 23(1):45-51. https://doi:18633/biotecnia.v23i1.1284.

Armendáriz, F. K. V.; Herrera, H. I. M.; Muñoz, M. E. and Sánchez, E. 2019. Characterization of bioactive compounds, mineral content, and antioxidant activity in bean varieties grown with traditional methods in Oaxaca, Mexico. Antioxidants. 8(26):1-17. https://doi:10.3390/ antiox8010026.

Bekele, G.; Dechassa, N.; Tana, T. and Sharma, J. J. 2019. Effects of nitrogen, phosphorus and vermicompost fertilizers on productivity of groundnut (Arachis hypogaea L.) in babile, Eastern Ethiopia. Agron. Res. 17:1532-1546.

Benzon, H. R. L.; Rubenecia, M. R. U.; Ultra, V. U. and Lee, S. C. 2015. Nano-fertilizer affects the growth, development, and chemical properties of rice. Inter. J. Agron. Agric. Res. 7(1):105-117. DOI: https://doi.org/10.5539/jas.v7n4p20

Bowles, T. M.; Atallah, S. S.; Campbell, E. E.; Gaudin, A. C. M.; Wieder, W. R. and Grandy, A. S. 2018. Addressing agricultural nitrogen losses in a changing climate. Nature Sustainability. 1(8):399-408. https://doi:10.1038/s41893-018-0106-0.

Bouwman, A.; Boumans, L. and Batjes, N. 2002. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem Cy. 16:6-1-6-13. DOI: https://doi.org/10.1029/2001GB001811

Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Letters. 15(1):15-22. DOI: https://doi.org/10.1007/s10311-016-0600-4

Díaz, O. A. C.; Escalante, E. J. A.; Trinidad, S. A.; Sánchez, G. P.; Mapes, S. C. y Martínez, M. D. 2004. Rendimiento, eficiencia agronómica del nitrógeno y eficiencia en el uso del agua en amaranto en función del manejo del cultivo. Terra Latinoam. 22(1):109-116.

Dong, N. Q. and Lin, H. 2020. Higher yield with less nitrogen fertilizer. Nat. Plants. 6:1078-1079. https://doi.org/10.1038/s41477-020-00763-3.

Echeverría, M. I. 2019. El tamaño sí importa: los nanofertilizantes en la era de la agricultura de precisión, desde el herbario Centro de Investigación Científica de Yucatán (CICY), AC. 11:69-75.

Hoagland, D. R. and Arnon, D. I. 1950. The water culture method for growing plants without soil. California agricultural experiment station, University of California, Berkeley, CA. 347 p.

Kah, M. Kookana, R. S.; Gogos, A. and Bucheli, T. D. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13(8):677-684. DOI: https://doi.org/10.1038/s41565-018-0131-1

Landeros, S. C.; Moreno, S. J. C.; Castañeda, C. M. R.; Lango, R. F.; Hernández, P. J. M.; Hernández, L. O. y Caballero, H. A. J. 2016. Manejo del nitrógeno en la caña de azúcar de la zona centro de Veracruz. México. Rev. Iberoamer. Bioecon. Camb. Climat. 2(1):43-52. DOI: https://doi.org/10.5377/ribcc.v2i1.5677

Li, P. W.; Yang, R. L. and Li, T. Y. 2007. Effects of molybdenum on nitrogen metabolism of sugarcane. Academy of agricultural sciences, sugarcane research center. Chinese Academy of Agricultural Sciences, China, Sugar Tech. 9(1):36-42. DOI: https://doi.org/10.1007/BF02956911

Liu, P. 2002. Effects of the stress of molybdenum on plants and the interaction between molybdenum and other element. Agri-Environ. Protec. 21:276-278.

Mendel, R. R. and Hänsch, R. 2002. Molybdoenzymes and molybdenum cofactor in plants. J. Exp. Bot. 53:1689-698. https://doi:10.1093/jxb/erf038. DOI: https://doi.org/10.1093/jxb/erf038

Naderi, M. R. and Danesh, S. A. 2013. Nanofertilizers and their roles in sustainable agriculture. Inter. J. Agric. Crop Sci. 5(19):22-29.

Nasar, J. and Shah, Z. 2017. Effect of iron and molybdenum on yield and nodulation of lentil. ARPN J. Agric. Biol. Sci. 12(11):332-339.

Orozco, V. J. A.; Palomo, G. A.; Gutiérrez, R. E.; Espinoza, B. A. y Hernández, H. V. 2008. Dosis de nitrógeno y su efecto en la producción y distribución de biomasa de algodón transgénico. Terra Latinoam. 26(1):29-35.

Ponce, G. C. O.; Soto, P. J. M.; Sánchez, E.; Muñoz, M. E.; Piña, R. F. J.; Flores, C. M. A.; Pérez, L. R. and Yáñez, M. R. M. 2019. Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy. 9(3):128-138. https://doi.org/10.3390/agronomy9030128.

Raliya, R.; Saharan, V.; Dimkpa, C. and Biswas, P. 2017. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem. 66(26):6487-6503. https://doi:10.1021/acs.jafc.7b02178. DOI: https://doi.org/10.1021/acs.jafc.7b02178

Rana, M. S.; Bhantana, P.; Imran, M.; Saleem, M. H. and Chengxiao, H. 2020a. Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Environ. Sci. Toxicol. 4(1):032-044. https://dx.doi.org/10.17352/aest. 000024.

Rana, M. S.; Sun, X.; Imran, M.; Ali, S. and Shaaban, M. 2020b. Molybdenum-induced effects on leaf ultra-structure and rhizosphere phosphorus transformation in Triticum aestivum L. Plant Physiol. Biochem. 153:20-29.

Sánchez, C. E.; Ruiz J. M. y Romero, L. 2016. Compuestos nitrogenados indicadores de estrés en respuesta a las dosis tóxicas y deficientes de nitrógeno en frijol ejotero. Rev. Electrón. Nov. Scientia. 16(8):228-244. DOI: https://doi.org/10.21640/ns.v8i16.439

Sánchez, E.; Romero, L. y Ruíz, J. M. 2006. Caracterización del estado nutricional y fisiológico en plantas de judía (Phaseolus vulgaris L. cv Strike) sometidas a un estrés por nitrógeno. Universidad de Granada, Granada, España. 86-98.

Sawires, E. S. 2001. Effect of phosphorus fertilization and micronutrients on yield and yield components of chickpea (Cicerarietinum.) Annals Agric. Sci. Cairo. 46:155-164.

Snyder, C. S. 2017. Enhanced nitrogen fertiliser technologies support the ‘4R’ concept to optimise crop production and minimise environmental losses. Soil Res. 55:463-472. https://doi.org/10.1071/SR16335. DOI: https://doi.org/10.1071/SR16335

Statistical Analysis System. 2007. SAS/STAT Users guide: Statics, Ver. 9.00; SAS Institute, Inc. Cary, NC, USA. 1503 p.

Stefanelli, D.; Goodwin, I. and Jones, R. 2010. Minimal nitrogen and water use in horticulture: effects on quality and content of selected nutrients. Food Res. Inter. 43:1833-1843. https://doi.org/10.1016/j.foodres.2010.04.022. DOI: https://doi.org/10.1016/j.foodres.2010.04.022

Subramanian, K. S.; Manikandan, A.; Thirunavukkarasu, M. and Rahale, C. S. 2015. Nano-fertilizers for balanced crop nutrition. In: Nanotechnologies in Food and Agriculture Springer, Cham. 69-80 pp. DOI: https://doi.org/10.1007/978-3-319-14024-7_3

Szarka, A.; Tomasskovics, B. and Bánhegyi, G. 2012. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Inter. J. Mol. Sci. 13(4):458-4483. DOI: https://doi.org/10.3390/ijms13044458

Published

2022-09-22

How to Cite

Muñoz-Márquez, Ezequiel, Juan Manuel Soto-Parra, Ramona Pérez-Leal, Rosa María Yánez-Muñoz, Linda Citlalli Noperi-Mosqueda, and Esteban Sánchez-Chávez. 2022. “Application of Nanomolybdenum in Beans and Its Impact on Nitrogen Efficiency”. Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:319-29. https://doi.org/10.29312/remexca.v13i28.3286.

Issue

Section

Articles

Most read articles by the same author(s)