Chemical synthesis of zinc oxide nanoparticles and their evaluation in Lactuca sativa seedlings

Authors

  • Alma Patricia Galindo-Guzmán Doctorate in Sciences in Water and Soil-National Technological of Mexico-Campus Technological Institute of Torreón. Torreón-San Pedro highway km 7.5, ejido Ana, Torreón, Coahuila, Mexico. ZC. 27170
  • Manuel Fortis-Hernández Doctorate in Sciences in Water and Soil-National Technological of Mexico-Campus Technological Institute of Torreón. Torreón-San Pedro highway km 7.5, ejido Ana, Torreón, Coahuila, Mexico. ZC. 27170
  • Claudia Verónica De La Rosa-Reta Doctorate in Sciences in Water and Soil-National Technological of Mexico-Campus Technological Institute of Torreón. Torreón-San Pedro highway km 7.5, ejido Ana, Torreón, Coahuila, Mexico. ZC. 27170
  • Héctor Zermeño-González Doctorate in Sciences in Water and Soil-National Technological of Mexico-Campus Technological Institute of Torreón. Torreón-San Pedro highway km 7.5, ejido Ana, Torreón, Coahuila, Mexico. ZC. 27170
  • Magdalena Galindo-Guzmán Polytechnic University of the Laguna Region. Street with no name, no number, ejido Santa Teresa, San Pedro de las Colonias, Coahuila, Mexico. ZC. 27942

DOI:

https://doi.org/10.29312/remexca.v13i28.3284

Keywords:

Lactuca sativa, anotechnology, toxicity

Abstract

There are currently studies on the different effects of nanomaterials in agriculture to improve crop germination and productivity, in order to ensure economic sustainability and the efficient use of production resources in agriculture. The ZnO nanoparticles applied in this study were synthesized by a chemical precipitation method and their characterization was performed by XRD, SEM, UV-visible spectroscopy and FTIR. The effect on the germination of lettuce (Lactuca sativa) seeds was determined by means of a completely randomized design with five ZnO-NPs treatments and a control treatment each with four repetitions. Physiological indices were measured, chlorophyll and carotenoid contents, and phenolic compound content in lettuce seedlings were quantified. The results indicate that applying doses of 50 mg L-1 ZnO-NPs, higher values of germination percentage (36.97%), fresh weight of plumule (23.91%), fresh weight of radicle (63.25%) and radicle length (50.58%) were achieved compared to the control groups. Likewise, the total phenol content increased (207.9%). Doses greater than 125 mg L-1 ZnO-NPs decrease the chlorophyll content, causing phytotoxic effects on L. sativa seedlings. As for the carotenoid content, the best treatment was 100 mg L-1 ZnO-NPs. The use of ZnO-NPs synthesized through a chemical precipitation method is a good alternative to be used as inducers in the biosynthesis of bioactive compounds in lettuce seedlings.

Downloads

Download data is not yet available.

References

Abdalla, M. A.; Li, F.; Wenzel-Storjohann, A.; Sulieman, S.; Tasdemir, D. and Mühling, K. H. 2021. Comparative metabolite profile, biological activity, and overall quality of three lettuce (Lactuca sativa L., Asteraceae) cultivars in response to sulfur nutrition. Pharmaceutics. 5(13):713. https://doi.org/10.3390/pharmaceutics13050713. Afrayeem, S. M. and Chaurasia, A. K. 2017. Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.). J. Pharmacogn. Phytochem. 6(5):1564-1566. Aquino, P.; Osorio, A. M.; Ninán, E. y Torres, F. 2018. Caracterización de nanopartículas de ZnO sintetizadas por el método de precipitación y su evaluación en la incorporación en pinturas esmalte. Rev. de la Sociedad Química del Perú. 84(1):5-17. Dhoke, S. K.; Mahajan, P.; Kamble, R. and Khanna, A. 2013. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol. Development. 3(1):e1-e1. https://doi.org/10.4081/nd.2013.e1. Dziki, D.; Gawlik-Dziki, U.; Kordowska-Wiater, M. and Domań-Pytka, M. 2015. Influence of elicitation and germination conditions on biological activity of wheat sprouts. J. Chem. 2015:1-8. https://doi.org/10.1155/2015/649709. Ealia, A. M. and Saravanakumar, M. P. 2017. A review on the classification, characterization, synthesis of nanoparticles and their application. In IOP Conference series: materials science and engineering. 263(3):032019 https://doi.org/10.1088/1757-899X/263/3/032019. Faizan, M.; Faraz, A.; Yusuf, M.; Khan, S. T. and Hayat, S. 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. 56(2):678-686. https://doi.org/10.1007/s11099-017-0717-0. Faizan, M.; Hayat, S. and Pichtel, J. 2020. Effects of zinc oxide nanoparticles on crop plants: a perspective analysis. Sustainable Agriculture Reviews. (41):83-99. https://doi.org/10.1007 /978-3-030-33996-8-4. Hasan, S. 2015. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci. 4 (ISC-2014):9-11. Hojjat, S. S. and Kamyab, M. 2017. The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russian Agric. Sci. 43(1):61-65. https://doi.org/ 10.3103/S1068367417010189. Li, R.; He, J.; Xie, H.; Wang, W.; Bose, S. K.; Sun, Y.; Hu, J. and Yin, H. 2019. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Inter. J. Biol. Macromol. 126:91-100. https://doi.org/10.1016/j.ijbiomac.2018.12.118. Lichtenthaler, H. K. and Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 11(5):591-592. https://doi.org/ 10.1042/bst0110591. Lin, D. and Xing, B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution. 150(2):243-250. https://doi.org/10.1016/j.envpol.2007. 01.016. Liu, R.; Zhang, H. and Lal, R. 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air and Soil Pollution. 227(1):1-14. https://doi.org/10.1007/s11270-015-2738-2.

Misra, A.; Dwivedi, S.; Srivastava, A. K.; Tewari, D. K.; Khan, A. and Kumar, R. 2006. Low iron stress nutrition for evaluation of Fe-efficient genotype physiology, photosynthesis, and essential monoterpene oil (s) yield of Ocimum sanctum. Photosynthetica. 44(3):474-477. https://doi.org/10.1007/s11099-006-0054-1. Mohsenzadeh, S. and Moosavian, S. S. 2017. Zinc sulphate and nano-zinc oxide effects on some physiological parameters of Rosmarinus officinalis. Am. J. Plant Sci. 8(11):2635-2649. https://doi.org/10.4236/ajps.2017.811178. Paramo, L. A.; Feregrino-Pérez, A. A.; Guevara, R.; Mendoza, S. and Esquivel, K. 2020. Nanoparticles in agroindustry: applications, toxicity, challenges, and trends. Nanomaterials. 10(9):1-19. https://doi.org/10.3390/nano10091654. Ramírez-Rodríguez, S. C.; Ortega-Ortiz, H.; Fortis-Hernández, M.; Nava-Santos, J. M.; Orozco-Vidal, J. A. y Preciado-Rangel, P. 2021. Nanopartículas de quitosano mejoran la calidad nutracéutica de germinados de triticale. Rev. Mex. Cienc. Agríc. 12(4):579-589. https://doi.org/10.29312/remexca.v12i4.2929. Raskar, S. V. and Laware, S. L. 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Inter. J. Current Microbiol. Appl. Sci. 3(2):467-473. Rawashdeh, R. Y.; Harb, A. M. and AlHasan, A. M. 2020. Biological interaction of zinc oxide nanoparticles; lettuce seed as case of study. Heliyon. 6(5):e03983. https://doi.org/10.1016/ j.heliyon.2020.e03983.

Salama, D. M.; Osman, S. A.; Abd El-Aziz, M. E.; Abd-Elwahed, M. S. A. and Shaaban, E. A. 2019. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology. (18):101083. https://doi.org/10.1016/j.bcab.2019.101083.

Salas-Pérez, L.; Gaucín-Delgado, J. M.; Preciado-Rangel, P.; Fortis-Hernández, M.; Valenzuela-García, J. R. y Ayala-Garay, A. V. 2016. Efecto del ácido benzoico en la capacidad antioxidante de germinados de trigo. Rev. Mex. Cienc. Agríc. 3(17):3397-3404. Singleton, V. L.; Orthofer, R. and Lamuela-Raventós, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299(7):152-178. https://doi.org/10.1016/S0076-6879(99)99017-1. Szőllősi, R.; Molnár, Á.; Kondak, S. and Kolbert, Z. 2020. Dual effect of nanomaterials on germination and seedling growth: Stimulation vs phytotoxicity. Plants. 9(12):1745. https://doi.org/10.3390/plants9121745.

Tovar-Jimenez, G. I.; Flores, S.; Suarez, J.; González, G. and Briceño, S. 2020. Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environmental Nanotechnology, Monitoring Management. (14):100350. https://doi.org/10.1016/j.enmm.2020.100350.

Wang, X.; Yang, X.; Chen, S.; Li, Q.; Wang, W.; Hou, C.; Gao, X.; Wang, L. and Wang, S. 2016. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers in Plant Science. (6):1243. https://doi.org/10.3389/fpls.2015.01243. DOI: https://doi.org/10.3389/fpls.2015.01243

Yan, S.; Wu, F.; Zhou, S.; Yang, J.; Tang, X. and Ye, W. 2021. Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC Plant Biology. 21(1):1-11. https://doi.org/10.1186/s12870-021-02929-3.

Published

2022-09-22

How to Cite

Galindo-Guzmán, Alma Patricia, Manuel Fortis-Hernández, Claudia Verónica De La Rosa-Reta, Héctor Zermeño-González, and Magdalena Galindo-Guzmán. 2022. “Chemical Synthesis of Zinc Oxide Nanoparticles and Their Evaluation in Lactuca Sativa Seedlings”. Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:299-308. https://doi.org/10.29312/remexca.v13i28.3284.

Issue

Section

Articles

Most read articles by the same author(s)