Phytochemical composition and antioxidant activity in three basil varieties due to the effect of different solvents

Authors

  • Lilia Salas-Pérez Faculty of Accounting and Administration-Autonomous University of Coahuila. Fco. Javier Mina 150, Luis Echeverría Álvarez, North Sector, Torreón, Coahuila, Mexico. ZC. 27085. Tel. 871 7161587
  • María del Rosario Moncayo-Lujan Polytechnic University of Gómez Palacio. Carretera la Torreña-locality el Vergel km 0.820, Gómez Palacio, Durango
  • Victoria Jared Borroel-García Polytechnic University of Gómez Palacio. Carretera la Torreña-locality el Vergel km 0.820, Gómez Palacio, Durango
  • Tania Lizzeth Guzmán-Silos Polytechnic University of Gómez Palacio. Carretera la Torreña-locality el Vergel km 0.820, Gómez Palacio, Durango
  • Mercedes Georgina Ramírez-Aragón Polytechnic University of Gómez Palacio. Carretera la Torreña-locality el Vergel km 0.820, Gómez Palacio, Durango. Tel. 871 1922700

DOI:

https://doi.org/10.29312/remexca.v13i28.3267

Keywords:

extraction, flavonoids, phenolic compounds, secondary metabolites

Abstract

Basil (Ocimum basilicum) is a very important crop in the world and in Mexico for the well-known specialties of Mediterranean cuisine. There is a growing demand for basil in the United States of North America and Europe due to its antioxidant content. Nowadays, to change synthetic antioxidants for natural ones is a trend in the food industry. Interest in analyzing natural, non-toxic and healthy products that work as antioxidants has increased. Basil contains high levels of secondary metabolites. With the aim of determining the extraction potential of different solvents (hexane, methanol, petroleum ether and ethanol) in three varieties of basil (Lemon, Cinnamon and Red Rubin). In the present study, quantification analyses were carried out for total phenolic compounds, with values between 0.5 and 17.9 mg based on gallic acid per gram of sample in dry weight, total flavonoids obtaining values that ranged between 2.4 and 10.8 mg of quercetin per gram of sample in dry weight and determination of antioxidant activity with results between 57.4-409.4 μmol Trolox per gram of sample in dry weight of the three varieties of basil (Lemon, Cinnamon and Red Rubin) and the different solvents as extraction media (methanol, hexane, petroleum ether and ethanol). Results of greater efficiency were obtained for the different variables measured when the solvent used was methanol in the Lemon and Cinnamon varieties and ethanol in the Red Rubin variety, without finding a significant difference to the extraction with methanol.

Downloads

Download data is not yet available.

References

Abkhoo, J. and Jahani, S. 2016. Antibacterial effects of aqueous and ethanolic extracts of medicinal plants against pathogenic strains. Inter. J. Infection. 4(2):42-624. DOI: https://doi.org/10.17795/iji-42624

Aboshora, W.; Lianfu, Z.; Dahir, M.; Qingran, M.; Qingrui, S.; Jing, L.; Haj, N. and Ammar, A. 2015. Effect of extraction method and solvent power on polyphenol and Flavonoid levels in Hyphaene Thebaica L. Mart (Arecaceae) (Doum) fruit, and its antioxidant and antibacterial activities. Trop. J. Pharmaceutical Res. 13(12):2057-2063. DOI: https://doi.org/10.4314/tjpr.v13i12.16

Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D. G. and Lightfoot, D. A. 2017. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 6(4):42-65. DOI: https://doi.org/10.3390/plants6040042

Ameer, K.; Shahbaz, H. M. and Kwon, J. H. 2017. Green extraction methods for polyphenols from plant matrices and their byproducts: a review: polyphenols extraction by green methods. Comprehensive. Reviews in Food Science Food Safety. 16(2):295-315. DOI: https://doi.org/10.1111/1541-4337.12253

Antonescu, M. A. I.; Miere, F. G.; Fritea, L.; Ganea, M.; Zdrinca, M.; Dobjanschi, L.; Antonescu, A.; Vicas, S. I.; Bodog, F.; Sindhu, R. K. and Cavalu, S. 2021. Perspectives on the combined effects of Ocimum basilicum and trifolium pratense extracts in terms of phytochemical profile and pharmacological effects. Plants. 10(7):1390-1409.

Balasundram, N.; Sundram, K. and Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99(1):191-203. DOI: https://doi.org/10.1016/j.foodchem.2005.07.042

Barbouchi, M.; Elamrani, K.; Idrissi, M. E. and Choukrad, M. 2020. A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. J. King Saud University Sci. 32(1):302-306. DOI: https://doi.org/10.1016/j.jksus.2018.05.010

Bhebhe, M.; Füller, T. N.; Chipurura, B. and Muchuweti, M. 2016. Effect of solvent type on total phenolic content and free radical scavenging activity of black tea and herbal infusions. Food Analytical Methods. 9(4):1060-1067. https://doi.org/10.1007/s12161-015-0270-z. DOI: https://doi.org/10.1007/s12161-015-0270-z

Brglez, M. E.; Knez, H. M.; Škerget, M.; Knez, Ž. and Bren, U. 2016. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 21(7):901-937. DOI: https://doi.org/10.3390/molecules21070901

Chaves, N. Santiago, A. and Alías, J. C. 2016. Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used. Antioxidants. 9(1):76-91.

Dailey, A. and Vuong, Q. V. 2015. Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric. 1(1):1115646-1115656. DOI: https://doi.org/10.1080/23311932.2015.1115646

Dhanani, T.; Shah, S.; Gajbhiye, N. A. and Kumar, S. 2017. Effect of extraction methods on yield, phytochemical constituents, and antioxidant activity of Withania somnifera. Arabian J. Chem. 10(1):1193-1199. DOI: https://doi.org/10.1016/j.arabjc.2013.02.015

Dhawan, D.; and Gupta, J. 2016. Comparison of different solvents for phytochemical extraction potential from datura metal plant leaves. Inter. J. Biol. Chem. 11(1):17-22. DOI: https://doi.org/10.3923/ijbc.2017.17.22

Do, Q. D.; Angkawijaya, A. E.; Tran, N. P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S. and Ju, Y. H. 2014. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Analysis. 22(3):296-302. DOI: https://doi.org/10.1016/j.jfda.2013.11.001

Dowlath, M. J. H.; Karuppannan, S. K.; Gi, D. R.; Sb, M. K.; Subramanian, S. and Arunachalam, K. D. 2020. Effect of solvents on phytochemical composition and antioxidant activity of Cardiospermum halicacabum (L.) extracts. Pharmacognosy J. 12(6):1241-1251.

Egata, D. F. 2021. Benefit and use of Sweet Basil (Ocimum Basilicum L.) In Ethiopia: a review. J. Nutr. Food Proces. 4(5):57-59.

Fajemiroye, J. O.; Silva, D. M.; Oliveira, D. R. and Costa, E. A. 2016. Treatment of anxiety and depression: medicinal plants in retrospect. Fundamental Clinical Pharmacol. 30(3):198-215. DOI: https://doi.org/10.1111/fcp.12186

Gan, R. Y.; Wang, M. F.; Lui, W. Y.; Wu, K. Dai, S. H.; Sui, Z. Q. and Corke, H. 2017. Diversity in antioxidant capacity, phenolic contents, and flavonoid contents of 42 edible beans from China. Cereal Chem. J. 94(2):291-297. DOI: https://doi.org/10.1094/CCHEM-03-16-0061-R

Joseph, J. 2014. Preliminary phytochemical screening and in vitro antioxidant activity of banana flower (Musa paradisiaca AAB Nendran variety). J. Pharmacy Res. 2(5):144-147.

Lezoul, N. E. H.; Belkadi, M.; Habibi, F. and Guillén, F. 2020. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules. 25(20):4672-4687.

Monteiro, M.; Santos, R. A.; Iglesias, P.; Couto, A.; Serra, C. R.; Gouvinhas, I.; Barros, A.; Oliva, T. A.; Enes, P. and Díaz, R. P. 2020. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro and microalgae extracts. J. Appl. Phycol. 32(1):349-362.

Nawaz, H.; Shad, M. A.; Rehman, N.; Andaleeb, H. and Ullah, N. 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharmaceutical Sci. 56(1):17129-17138.

Ng, Z. X.; Samsuri, S. N. and Yong, P. H. 2020. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. J. Food Processing Preserv. 44(9):14680-14691.

Ng, Z. X. and See, A. N. 2019. Effect of in vitro digestion on the total polyphenol and flavonoid, antioxidant activity and carbohydrate hydrolyzing enzymes inhibitory potential of selected functional plant‐based foods. Food Processing Preserv. 43(4):13903-13916.

Orlando, G.; Zengin, G.; Ferrante, C.; Ronci, M.; Recinella, L.; Senkardes, I.; Gevrenova, R.; Zheleva, D. D.; Chiavaroli, A.; Leone, S.; Di, S. S.; Brunetti, L.; Picot, A. C.; Mahomoodally, M. F.; Sinan, K. I. and Menghini, L. 2019. Comprehensive chemical profiling and multidirectional biological investigation of two wild anthemis species (Anthemis tinctoria var. Pallida and A. cretica subsp. tenuiloba): focus on neuroprotective effects. Molecules. 24(14):2582-2607.

Pereira, G. A.; Peixoto, A. N. M.; Arruda, H. S.; Farias, D. P.; Molina, G. and Pastore, G. M. 2019. Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): a review. Food Res. Inter. 126(1):108713-108732.

Rafi, M.; Meitary, N.; Anggraini, S. D. and Bintang, M. 2020. Phytochemical profile and antioxidant activity of Guazuma ulmifolia leaves extracts using different solvent extraction. Indonesian J. Pharmacy. 31(3):171-180.

Ramírez, A. M. G.; Borroel, G. V. J.; Salas, P. L.; López, M. J. D.; Gallegos, R. M. A. and Trejo, E. H. I. 2019. Ácido rosmarínico, fenólicos totales y capacidad antioxidante en tres variedades de Ocimum basilicum L. con diferentes dosis de potasio. Polibotánica. 47(7):89-98.

Rezzoug, M.; Bakchiche, B.; Gherib, A.; Roberta, A.; Flamini, G.; Kilinçarslan, Ö.; Mammadov, R. and Bardaweel, S. K. 2019. Chemical composition and bioactivity of essential oils and ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. From the Algerian Saharan atlas. BMC complementary and alternative medicine. 19(1):146-156.

Salih, E. Y. A.; Julkunen, T. R.; Luukkanen, O.; Sipi, M.; Fahmi, M. K. M. and Fyhrquist, P. J. 2020. Potential anti tuberculosis activity of the extracts and their active components of Anogeissus leiocarpa (DC.) Guill. and Perr. with special emphasis on polyphenols. Antibiotics. 9(7):364-389.

Stalikas, C. D. 2007. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Separation Sci. 30(18):3268-3295. DOI: https://doi.org/10.1002/jssc.200700261

Thakur, N. and Vasudevan, S. N. 2019. Role of enzymatic antioxidants in seed science and technology: a review. J. Pharmacogn. Phytochem. 8(4):3503-3507.

Zamora, M. A.; Lillo, A.; Carvajal, C. F.; Nuñez, D. and Balboa, N. 2016. Cuantificación espectrofotométrica de compuestos fenólicos y actividad antioxidante en distintos berries nativos del Cono Sur de América. 42(2):168-174.

Published

2022-09-22

How to Cite

Salas-Pérez, Lilia, María del Rosario Moncayo-Lujan, Victoria Jared Borroel-García, Tania Lizzeth Guzmán-Silos, and Mercedes Georgina Ramírez-Aragón. 2022. “Phytochemical Composition and Antioxidant Activity in Three Basil Varieties Due to the Effect of Different Solvents”. Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:113-23. https://doi.org/10.29312/remexca.v13i28.3267.

Issue

Section

Articles

Most read articles by the same author(s)