Structural characteristics of grasses: Mulato II, Convert 330 and Convert 431 (hybrid Urochloa)

Authors

  • Herminio Aniano-Aguirre National Technological Institute of Mexico-Campus Technological Institute of Pinotepa. National Pinotepa, Oaxaca, Mexico
  • María de los Ángeles Maldonado-Peralta Faculty of Veterinary Medicine and Zootechnics No. 2-Autonomous University of Guerrero. Cuajinicuilapa, Guerrero, Mexico
  • Lauro Gasga-Pérez National Technological Institute of Mexico-Campus Technological Institute of Pinotepa. National Pinotepa, Oaxaca, Mexico
  • Urfila Victoria Pelaez-Estrada National Technological Institute of Mexico-Campus Technological Institute of Pinotepa. National Pinotepa, Oaxaca, Mexico
  • José Antonio Hernández-Marín 3Department of Veterinary, Medicine and Zootechnics-Division of Life Sciences-University of Guanajuato. Irapuato-Salamanca Campus
  • Adelaido Rafael Rojas-García Faculty of Veterinary Medicine and Zootechnics No. 2-Autonomous University of Guerrero. Cuajinicuilapa, Guerrero, Mexico.

DOI:

https://doi.org/10.29312/remexca.v13i5.3230

Keywords:

Urochloa, leaf elongation, stem population, weight per stem

Abstract

The objective was to evaluate the grasses of the genus Urochloa: Mulato II, Convert 330 and Convert 431 by varying the cut ages in the attributes: stem population dynamics, tissue replacement, leaf:stem ratio, weight per stem and dry matter yield. The research was carried out in the grasslands of the Technological Institute of Pinotepa, in the locality of San José Estancia Grande, Oaxaca. The treatments were the genotypes: Mulato II, Convert 330 and Convert 431. The data were analyzed using a completely randomized block design arranged in split plots and four repetitions, the procedure used was PROC GLM of SAS. The Mulato II grass had the highest stem density with an average of 540 stems m-2, while the Convert 330 grass had the lowest stem density throughout the research, with an average of 220 stems m-2, tending to increase slower over time (p< 0.05). The grass that obtained the highest net growth was Convert 330, followed by Mulato II and, at the end, Convert 431, with an average of 169, 133 and 104 cm stem-1, respectively (p< 0.05). On day 49 after cutting, the Convert 330 grass obtained the highest yield with 4 091 kg DM ha-1 (p< 0.05). In conclusion, the Convert 330 genotype showed better structural characteristics in the grassland, which reflects a higher dry matter yield.

Downloads

Download data is not yet available.

References

Castro, R. R.; Hernández-Garay, A.; Ramírez, R. O.; Aguilar, B. G.; Enríquez, Q. J. F. y Mendoza, P. S. I. 2013. Crecimiento en longitud foliar y dinámica de población de tallos de cinco asociaciones de gramíneas y leguminosa bajo pastoreo. Rev. Mex. Cienc. Pec. 4(2):201-215.

Cruz, H. A.; Hernández, G. A.; Enríquez, Q. J. F.; Gómez, V. A.; Ortega J. E. y Maldonado, G. N. M. 2011. Producción de forraje y composición morfológica del pasto Mulato (Brachiaria híbrido 36061) sometido a diferentes regímenes de pastoreo. Rev. Mex. Cienc. Pec. 2(4):429-443.

Fagundes, J. L.; Fonseca, M. D.; Mistura, C.; Morais, R.; Vitor, C. M. T.; Gomide, A. J.; Nascimento, D. J. R.; Casagrande, R. D. and Costa, L. T. 2006. Características morfogênicas e estruturais do capim-braquiária empasta gema duba da com nitrogênio avaliadas nas quatro estações do ano. Rev. Bras. Zootec. 35(1):21-29. DOI: https://doi.org/10.1590/S1516-35982006000100003

Fornoni, J.; Núñez-farfán, J. and Valverde, P. L. 2003. Evolutionary ecology of tolerance to herbivory: advances and perspectives. Comm. Theor. Biol. 8:643-663.

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. 4a (Ed.). Universidad Nacional Autónoma de México (UNAM). México, DF. 97-100 pp.

Landsberg, J.; James, C. D.; Morton, S. R.; Müller, W. J. and Stol, J. 2003. Abundance and composition of plant species along grazing gradients in Australian rangelands. J. Appl. Ecol. 40(6):1008-1024. DOI: https://doi.org/10.1111/j.1365-2664.2003.00862.x

Li, X.; Liu, Z.; Ren, W.; Ding, Y.; Ji, L.; Guo, F. and Hou, X. 2016. Linking nutrient strategies with plant size along a grazing gradient: evidence from Leymus chinensis in a natural pasture. J. Integrative Agric. 15(5):1132-1144. DOI: https://doi.org/10.1016/S2095-3119(15)61171-6

Maldonado, P. M. Á.; Rojas, G. A. R.; Magadan, O. F.; Pinacho, M. M.; Aguirre, H. A. and Gasga, P. L. 2020a. Physical-Chemical quality of Urochloa grasses in different phenological stages. Inter. J. Agric. Environ. Bio. 5(4):162-171.

Maldonado, P. M. Á.; Rojas, G. A. R.; Ruiz, C. J. L.; Aguirre, H. A.; Magadan, O. F.; Jorge, C. L. and Mondragón, C. U. 2020b. Stem population and tissue replacement of Urochloa in different phenological stages. Am. J. Plant Sci. 11(8):1296-1306.

Maldonado, P. M. A.; Rojas, G. A. R.; Sánchez, S. P.; Bottini, L. M. B.; Torres, S. N.; Ventura, R. J.; Joaquín, C. S. y Luna, G. M. J. 2019. Análisis de crecimiento del pasto Cuba OM-22 (Pennisetum purpureum X Pennisetum glaucum) en el trópico seco. Agroproductividad. 12(8):17-22.

Matthew, C.; Hernández-Garay, A. and Hodgson, J. 1996. Making sense of the link between tiller density and pasture production. Proc. New zeal. Grassland Assoc. 57:83-87.

Nguku, A. A.; Musimba, N. K. R.; Njarui, D. N. and Mwobobia, R. M. 2016. The chemical composition and nutritive value of Brachiaria grass cultivars at Katuman cryland research station in Southeastern Kenya. J. Adv. Agric. 5(2):706-717.

Ramírez, R. O.; Flores, I. A.; Hernández, C. E.; Rojas, G. A. R.; Maldonado, P. M. Á. y Valenzuela, L. J. L. 2020. Dinámica poblacional de tallos e índice de estabilidad del pasto llanero (Andropogon gayanus Kunt). Rev. Mex. Cienc. Agríc. 11(4):23-34. DOI: https://doi.org/10.29312/remexca.v0i24.2355

Ramírez, R. O.; Carneiro, da S. S.; Hernández, G. A.; Enríquez, Q. J. F.; Pérez, P. J.; Quero, C. A. R. y Herrera, H. J. G. 2011. Rebrote y estabilidad de la población de tallos en el pasto Panicum maximum CV. ‘Mombaza’ cosechado en diferentes intervalos de corte. Rev. Fitotec. Mex. 34(3):213-220.

Ramírez, R. O.; Hernández, G. A.; Carneiro, da S. S.; Pérez, P. J.; Salim, J. J. de S.; Castro, R. R. y Enríquez, Q. J. F. 2010. Características morfogénicas y su influencia en el rendimiento del pasto Mombaza, cosechado a diferentes intervalos de corte. Trop. Subtrop. Agroecosys. 12(2):303-311.

Ramírez, R. O.; Hernández, G. A.; Carneiro, D. C.; Pérez, P. J.; Enríquez, Q. J. F.; Quero, C. A. R.; Herrera, H. J. G. and Cervantes, N. A. 2009. Acumulación de forraje, crecimiento y características estructurales del pasto mombaza (Panicum máximum Jacq.) cosechado a diferentes intervalos de corte. Téc. Pec. Méx. 47(2):203-213.

Rodolfo, G. R.; Schmitt, D.; Días, M. K. and Sbrissia, A. F. 2015. Levels of defoliation and regrowth dynamics in elephant grass swards. Ciência Rural, Santa Maria. 45(7):1299-1304. DOI: https://doi.org/10.1590/0103-8478cr20141094

Rojas, G. A. R.; Maldonado, P. M. Á.; Sánchez, S. P.; Magadan, O. F.; Álvarez, V. P. and Rivas, J. M. A. 2020. Growth analysis of grass Mulato II (Hybrid Urochloa) by variety of cutting intensity. Inter. J. Agric. Environ. Biores. 5(4):19-28.

Rojas, G. A. R.; Torres-Salado, N.; Maldonado-Peralta, M. de los A.; Sánchez-Santillán, P.; García-Balbuena, A.; Mendoza-Pedroza, S. I.; Álvarez-Vázquez, P.; Herrera-Pérez, J. y Hernández-Garay, A. 2018. Curva de crecimiento y calidad de pasto cobra (Brachiaria híbrido BR02/1794) a dos intensidades de corte. Agroproductividad. 11(5):24-28.

Rueda, J. A.; Rodríguez, J. de D. G.; Ordoñes, S. R.; Martínez, C. U. A.; Montiel, W. H. and Ortega, J. E. 2020. Morphological composition and fiber partitioning along regrowth in elephant grass CT115 intended for ethanol production. Nature. 10:15118.

Rueda, J. A.; Ortega, J. E.; Enríquez-Quiroz, J. F.; Palacios-Torres, R. E. and Ramírez-Ordoñes, S. 2018. Tiller population dynamics in eight cultivars of elephant grass durin gundistur bed growth. Afr. J. Range Forage Sci. 35(1):1-11.

SAS. 2013. The SAS 9.4 Procedure’sguide: statistical procedures. Second (Ed.). SAS Institute Inc. Cary, NC, USA. 540-550

Taiz, L. and Zeiger, E. 2002. Plant physiology. Third (Ed.). Sinauer associates, Inc. Massachusetts. 690 p.

Wang, D.; Juan, D.; Baotian, Z.; Lei, B.; Kenneth, C. and Hodgkinson. 2017. Grazing Intensity and phenotypic plasticity in the clonal grass leymus chinensis. Rangeland Ecol. Manag. 70(6):740-747. DOI: https://doi.org/10.1016/j.rama.2017.06.011

Wilson, G. C. Y.; Zavaleta, M. H. A.; López, D. H. y Hernández, G. A. 2008. La citoquinina BAP retrasa la senescencia, aumenta antioxidantes, proteína y crecimiento en el pasto ovillo (Dactylis glomerata L.). Agrociencia. 42(7):799-806.

Published

2022-08-02

How to Cite

Aniano-Aguirre, Herminio, María de los Ángeles Maldonado-Peralta, Lauro Gasga-Pérez, Urfila Victoria Pelaez-Estrada, José Antonio Hernández-Marín, and Adelaido Rafael Rojas-García. 2022. “Structural Characteristics of Grasses: Mulato II, Convert 330 and Convert 431 (hybrid Urochloa)”. Revista Mexicana De Ciencias Agrícolas 13 (5). México, ME:863-72. https://doi.org/10.29312/remexca.v13i5.3230.

Issue

Section

Articles

Most read articles by the same author(s)