Low-temperature-resistant sugars in avocado rootstocks

Authors

  • Bernardo Bernal-Valenzo Colegio de Postgraduados-Campus Monteillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230
  • Guillermo Calderón-Zavala Colegio de Postgraduados-Campus Monteillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230.
  • Alfredo López-Jiménez Colegio de Postgraduados-Campus Monteillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230.
  • Daniel Padilla-Chacon Colegio de Postgraduados-Campus Monteillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, México. CP. 56230.

DOI:

https://doi.org/10.29312/remexca.v15i2.3221

Keywords:

cold tolerant, fructose, glucose, ‘Hass’, segregating

Abstract

In Mexico, due to the demand for fruit, orchards of avocado (Persea americana Mill.) variety ‘Hass’ of subtropical climate are erroneously established in cold areas, affecting their production; an alternative is to use cold-tolerant rootstocks of the Mexican race, tolerance related to the increase of sugars in areas of demand, which it shares through grafting with the ‘Hass’ variety; therefore, in 2021, the segregants of the ‘rootstocks’ duke 7, tepetl, aceitoso, and colecta 1 were evaluated at the College of Postgraduates; analyzing glucose, fructose, sucrose and starch contents in vegetative shoots at 1, 7, and 14 days of treatment; in chamber 1 (treatment) with luminosity of 380 μmol m-2 s-1 and temperatures with light of 15.61 °C, and darkness of 4.40 °C; and chamber 2 (control) with luminosity of 367 μmol m-2 s-1 and temperatures with light of 23.2 °C, and darkness of 19.29 °C, considering the factor of cold and low luminosity, it was observed that, chlorophyll in the leaves shows growth without photosynthetic deficiency in plants in both chambers; the glucose content of the ‘Hass’ variety varies according to the glucose content in the rootstock; the fructose content increases in grafted and non-grafted materials, acting as an osmoprotectant, the sucrose content increases in the grafted aceitoso material and the starch content is not affected; as a result, duke 7 and tepetl were the materials with the highest concentration of glucose and fructose under cold conditions.

Downloads

Download data is not yet available.

References

Baguma, Y. K.; Sun, Ch.; Ahlandsberg, S.; Mutisya, J.; Palmqvist, S.; Rubaihayo, P. R.; Magambo, M. J.; Egwang, T. G.; Larsson, H. and Jansson, C. 2003. Expression patterns of the gene encoding starch branching enzyme II in the storage roots of cassava (Manihot esculenta crantz). Plant Sci. 164(5):833-839.

Barrientos-Priego, A. F.; Muñoz-Pérez, R. B.; Borys, M. W. y Martínez-Damián, M. T. 2000. Cultivares y portainjertos del aguacate. In: el aguacate y su manejo integrado. 35-54 pp.

Bergh, B. O. 1992. The origin nature and genetic, improvement of avocado. California Avocado Society Yearbook. 76(1):61-75.

Crane, J. H.; Douhan, G. W.; Faber, B. A.; Arpia, M. L.; Bender, G. S.; Balerdi, C. F. and Barrientos, A. F. 2013. El aguacate. Botánica. Cultivares y portainjertos. Producción y usos. Ed. Universitarias de Valparaiso. Chile. 243-271 pp.

Coelho, F. S.; Fontes, P. C. R.; Puiatti, M.; Neves, J. C. L. y Silva, M. C. C. 2010. Dose de nitrogenioassociada a produtividade de batata e índices do estado de nitrogenionafolha. Revista Brasileira de Ciencia do Solo. 34(4):1175-1183.

Dickson, R. E.; Tomlinson, P. T. and Isebrands, J. G. 2000. Allocation of current photosynthate and changes in tissue dry weight within northern red oak seedlings: individual leaf and flush carbon contribution during episodic growth. Canadian Journal of Forest Research. 30(8):1296-1307.

Geigenberger, P.; Kolbe, A. and Tiessen, A. 2005. Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany. 56(416):1469-1479.

Gianquinto, G.; Sambo, P. and Bona, S. 2003. The use of SPAD-502 chlorophyll meter for dynamically optimizing the nitrogen supply in potato crop. A methodological Approach. Acta Horticulturae. 32(607):197-204.

Hopkins, W. G. and Huner, N. 2004. Introduction to plant physiology. New York: John Wiley. 173-194 pp.

Knight, R. J. 2002. History, distribution and uses. In: Whiley, A. W.; Schaffer, B. and Wolstenholme, B. N. Ed. The avocado: botany, production and uses, 1st end. CAB International, Wallingford, UK. 1-14 pp.

Lahav, E. and Trochoulias, T. 1982. The effect of temperature on growth and dry matter production of avocado plants. Australian Journal of Agricultural Research. 33(3):549-558.

Lacono, F.; Buccella, A. and Peterlunger, E. 1998. Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. Scientia Horticulturae. 75(1):27-39.

Liu, X.; Mickelbart, M. V.; Robinson, P. W.; Hofshi, R. and Arpaia, M. L. 2002. Photosynthetic characteristics of avocado leaves. Acta Horticulturae. 575:865-874.

Lockard, R. G. and Schneider, G. W. 1981. Stock and scion relationships and the dwarfing mechanism in apple. Horticultural reviews. 3(7):315-375.

Marschall, M.; Sütő, S. and Szőke, S. 2019 Comparative ecophysiological study of the seasonally dependent non-structural carbohydrate pool of the fractal accumulating Helianthus tuberosus, Cichorium intybus and Dactylis glomerata. Acta biol. Plant. Agriensis. 7(1):81-115.

Mclauchlan, A.; Ogbonnaya, F. Ch.; Hollingsworth, B.; Mcneil M. D; Gale, K.; Henry, R. J.; Holton, T.; Morell, M.; Rampling, L.; Sharp, P.; Shariflou, M. R.; Jones, M. E. and Appels, R. 2001. Development of robust PCR-based DNA markers for each homoeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust. J. Agric. Res. 52(11-12):1409-1416.

Mickelbart, M. V.; Mesleer, S. and Arpaia, M. L. 2007. Slinityinduced changes in ion concentration of Hass avocado trees on three rootstocks. Journal of Plant Nutrition. 30(1):105-122.

Minchin, P. E. and Lacointe, A. 2005. New understanding on phloem physiology and possible consequences for modelling long distance carbon transport. New Phytol 166(3):771-779.

Padilla, Ch. D. y Martínez, B. E. 2007. Factores involucrados en la distribución de azúcares en las plantas vasculares: comunicación entre los tejidos fuente y demanda. Departamento de bioquímica. Conjunto E. Facultad de Química. Universidad Nacional Autónoma de México (UNAM). 26(3):99-105.

Poirier, M.; Lacointe, A. and Améglio, T. 2010. A semi physiological model of cold hardening and dehardening in walnut stem. Tree Physiol. 30(12):1555-1569.

PROFECO. 2021. Producción de Aguacate. https://www.gob.mx/profeco/documentos/ para-aguacates-los-demexico?state=published#:~:text=En%202020%2C%20la %20p.

Rolland, F.; Moore, B. and Sheen, J. 2002. Sugar sensing and signaling in plants. Plant Cell. S185-S205.

Taiz, L. and Zeiger, E. 2004. Fisiología vegetal. 3ra. Ed. Porto Alegre: Artmed. 709-719 pp.

Whiley, A. W. 1990. CO2 assimilation of developing shoots of cv ‘Hass’ avocado (Persea americana Mill.) a preliminary report. South African avocado growers’ association yearbook 13(1):28-30.

Published

2024-03-21

How to Cite

Bernal-Valenzo, Bernardo, Guillermo Calderón-Zavala, Alfredo López-Jiménez, and Daniel Padilla-Chacon. 2024. “Low-Temperature-Resistant Sugars in Avocado Rootstocks”. Revista Mexicana De Ciencias Agrícolas 15 (2). México, ME:e3221. https://doi.org/10.29312/remexca.v15i2.3221.

Issue

Section

Articles

Most read articles by the same author(s)