In vitro effectiveness of silicon dioxide and graphene nanoparticles combined with extracts of Bacillus amyloliquefaciens against phytopathogenic fungi

Authors

  • Ernesto Cerna-Chávez Departamento de Parasitología-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro núm. 1923, col. Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 6735367
  • Antonio Orozco-Plancarte Departamento de Parasitología-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro núm. 1923, col. Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 6735367
  • Yisa María Ochoa-Fuentes Departamento de Parasitología-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro núm. 1923, col. Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 6735367
  • Jerónimo Landeros-Flores Departamento de Parasitología-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro núm. 1923, col. Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 6735367
  • Diana Jasso de Rodríguez Departamento de Parasitología-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro núm. 1923, col. Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 6735367
  • Anselmo Hernández Pérez INIFAP

DOI:

https://doi.org/10.29312/remexca.v15i8.3140

Keywords:

agronanotechnology, beneficial bacteria, nanofungicides

Abstract

The use of nanoparticles in agriculture opens the opportunity for the development of agro-products with this technology, aimed at controlling diseases caused by phytopathogenic fungi. This study aimed to evaluate in vitro the inhibitory effect of silicon dioxide (SiO2 NPs) and graphene nanoparticles (Graf NPs) mixed with extracts of Bacillus amyloliquefaciens (EcBa) on the mycelial development and formation of reproductive structures of Fusarium solani, Rhizoctonia solani, Colletotrichum acutatum, and Alternaria alternata. For the biological effectiveness test, the poisoned medium technique was used under a completely randomized design of two doses (DE70 and DE90) and absolute control with 20 replications for each treatment. Data were analyzed using an analysis of variance and Tukey’s mean test (p≤ 0.05). Effective doses were calculated using a Probit analysis. The treatment that showed the best inhibitory effect was SiO2 NPs + EcBa since it managed to inhibit mycelium growth and decreased the production of reproductive structures (spores and sclerotia) by 84% to 100% with low doses of Fusarium solani, Rhizoctonia solani, Colletotrichum acutatum, and Alternaria alternata, followed by Graf Nps + EcBa, EcBa, at higher doses, they obtained 83.7 to 100% inhibition, respectively.

Downloads

Download data is not yet available.

Author Biography

Anselmo Hernández Pérez, INIFAP

Investigador de Inifap

References

Alimardani, V.; Abolmaali, S. S. and Borandeh, S. 2019. Antifungal and antibacterial properties of graphene-based nanomaterials: a mini-review. Journal of Nanostructures. 9(3):402-413. Doi: 10.22052/JNS.2019.03.002.

Arie, T. 2019. Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. Journal of Pesticide Science. 44(4):275-281. Doi: 10.1584/jpestics. J19-03.

Ahumada, C. A.; Gallegos-Morales, G.; Hernández-Castillo, F. D.; Ochoa-Fuentes, Y. M.; Cepeda-Siller, M. y Castillo-Reyes, F. 2019. Antagonistas microbianos a Fusarium spp., como agente causal de pudrición de raíces y tallo en melón. Ecosistemas y Recursos Agropecuarios. 6(16):45-55. Doi: http://doi.org/10.19136/era.a6n16.1843.

Barroso, A. A. C.; Ochoa, F. Y. M.; Cerna, C. E.; Tucuch, P. M. A.; Olalde, P. V. y Robles, Y. L. 2021. Manejo in vitro de antracnosis (Colletotrichum acutatum Simmonds) en aguacate mediante el uso de principios activos botánicos. Ecosistemas y Recursos Agropecuarios. 8(2):e3038-1-7. Doi:10.19136/era.a8n2.3038.

Coromoto, A. Y. y Reyes, I. 2018. Microorganismos promotores de crecimiento en el biocontrol de Alternaria alternata en tomate (Solanum lycopersicum L.). Bioagro. 1(30):59-66.

Correa, P. Z. C.; Bautista, B. S.; Hernández, L. M. y Marquina, V. M. A. 2018. Evaluation of nanoformulations on in vitro development of fungal phytopathogens. Revista Mexicana de Fitopatología. 3(36):457-467.

Derbalah, A.; Shenashen, M.; Hamza, A.; Mohamed, A. and El Safty, S. 2018. Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato. Egyptian Journal of Basic and Applied Sciences. 5(2):145-150. https://doi.org/10.1016/j.ejbas.2018.05.002.

Duan, Y.; Chen, R.; Zhang, R.; Jiang, W.; Chen, X.; Yin, C. and Mao, Z. 2021. Isolation, identification and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Frontiers of Microbiology. 12:1-24. Doi: 10.3389/fmicb.2021.746799.

El-Abeid, S. E.; Ahmed, Y.; Daròs, J. A. and Mohamed, M. A. 2020. Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: a potent antifungal nanocomposite against fusarium root and wilt diseases of tomato and pepper plants. Nanomaterials. 10(1001):1-21. https://doi.org/10.3390/nano10051001.

Elabasy, A.; Shoaib, A.; Waqas, M.; Shi, Z. and Jiang M. 2020. Cellulose nanocrystals loaded with thiamethoxam: fabrication, characterization, and evaluation of insecticidal activity against Phenacoccus solenopsis tinsley (Hemiptera: Pseudococcidae). Nanomaterials (Basel). 10(4):788-1-13. Doi: 10.3390/nano10040788.

Es-Soufi, R.; Tahiri, H.; Azaroual, L.; Oualkadi, A.; Martin, P.; Badoc, A. and Lamarti, A. 2020. In vitro antagonistic activity of Trichoderma harzianum and Bacillus amyloliquefaciens against Colletotrichum acutatum. Advances in Microbiology. 10(3):82-94. Doi: 10.4236/aim.2020.103008.

Fernando, S.; Gunasekara, T. and Holton, J. 2018. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. 8(1):2-11. Doi: 10.4038/sljid.v8i1.8167.

Fira, D. J.; Dimkić, I.; Berić, T.; Lozo, J. and Stanković, S. 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnol. 285:44-55. Doi: 10.1016/j.jbiotec.2018.07.044.

Habe, H.; Toshiaki, T. and Tomohiro, I. 2017. Screening of a Bacillus subtilis Strain producing multiple types of cyclic lipopeptides and evaluation of their surface tension lowering activities. Journal of Oleo Science. 66(7):785-790.

Jia, Q.; Fan, Y.; Duan, S.; Qin, Q.; Ding, Y.; Yang, M.; Wang, Y.; Liu, F. and Wang, C. 2023. Effects of Bacillus amyloliquefacien XJ-BV2007 on growth of Alternaria alternata and production of tenuazonic acid. Toxins. 15(1):53. https://doi.org/10.3390/toxins15010053.

Jiao, R.; Cai, Y.; He, P.; Munir, S.; Li, X.; Wu, Y.; Wang, J.; Xia, M.; He, P.; Wang, G.; Yang, H.; Karunarathna, S. C.; Xiem, Y. and He, Y. 2021. Bacillus amyloliquefaciens YN201732 produces lipopeptides with promising biocontrol activity against fungal pathogen Erysiphe cichoracearum. Frontiers in Cellular Infection and Microbiology. 11:598999. Doi: 10.3389/fcimb.2021.598999.

Kiptoo, J. J.; Abbas, A.; Bhatti, A. M.; Usman, H. M.; Shad, M. A.; Umer, M.; Atiq, M. N.; Alam, S. M.; Ateeq, M.; Khan, M.; Peris, N. W.; Razaq, Z.; Anwar, N. and Iqbal, S. 2021. Rhizoctonia solani of potato and its management: A Review. Plant Protection. 05(03):157-169. Doi: 10.33804/pp.005.03.3925.

Koka, J. A.; Wani, A. H. and Bhat, M. Y. 2019. Evaluation of antifungal activity of magnesium oxide (MgO) and iron oxide (FeO) nanoparticles on rot causing fungi. Journal of Drug Delivery and Therapeutics. 9(2-s):173-178.

Lee, T.; Park, D.; Kim, K.; Lim, S. M.; Yu, N. H.; Kim, S.; Kim, H. Y.; Jung, K. S.; Jang, J. Y.; Park, J. C.; Ham, H.; Lee, S.; Hong, S. K. and Kim, J. C. 2017. Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. The Plant Pathology Journal. 33(5):499-507. Doi: 10.5423/PPJ.FT.06.2017.0126.

Ley, L. N.; Márquez, Z. I.; Carrillo, F. J. A.; León, F. J.; Cruz, L. I.; García, E. R. S. and Allende, M. R. 2018. Effect of biocontrol and germinative inhibition of Bacillus spp. on zoospores of Phytophthora capsici. Revista Mexicana de Fitopatología. 36(2):1-18. Doi: 10.18781/R.MEX.FIT.1711-2.

Lira-Saldívar, R. H.; Méndez, A. B.; Santos, V. G. y Vera, R. I. 2018. Potencial de la nanotecnología en la agricultura. Acta Universitaria. 28(2):9-24. Doi: 10.15174/au.2018.1575.

Malandrakis, A.; Daskalaki, E. R.; Skiada, V.; Paoadopoulou, K. K. and Kavroulakis. N. 2018. A Fusarium solani endophyte vs fungicide: compatibility in a Fusarium oxysporum f sp. radicis-lycopersici-tomato pathosystem. Fungal Biology. 122(12):1215-1221. Doi: http://doi.org/10.1016/j.funbio.2018.10.003.

Maslennikova, V. S.; Tsvetkova, V. P.; Shelikhova, E. V.; Selyuk, M. P.; Alikina, T. Y.; Kabilov, M. R. and Dubovskiy, I. M. 2023. Bacillus subtilis and Bacillus amyloliquefaciens mix suppresses rhizoctonia disease and improves rhizosphere microbiome, growth and yield of potato (Solanum tuberosum L.). Journal of Fungi. 9(12):1142. https://doi.org/10.3390/jof9121142.

Mckeen, C. D.; Reilly, C. C. and Pusey, P. L. 1986. Production and partial characterization of antifungal substances to Monilinia fructicola from Bacillus subtilis. Ecology and Epidemiology. 2(76):136-139.

Ngalimat, M. S.; Yahaya, R. S. R.; Baharudin, M. M. A.; Yaminudin, S. M.; Karim, M.; Ahmad, S. A. and Sabri, S. 2021. A Review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms. 9(3):614. Doi: 10.3390/microorganisms9030614.

Ochoa, Y. M.; Cerna, C. E.; Landeros, F. J.; Hernández, C. S. y Delgado, O. J. C. 2012. Evaluación in vitro de la actividad antifúngica de cuatro extractos vegetales metanólicos para el control de tres especies de Fusarium spp. Revista Internacional de Botánica Experimental. 81:69-73.

Pariona, N.; Hermida, M. L. A; Martínez, E. A. I.; Sánchez, R. D.; Carrión, G.; López, L. D.; Rosas, S. G.; Rodríguez, H. B. y Duran, B. Z. 2018. Síntesis de nanopartículas de cobre para el control de hongos fitopatógenos. Revista ECI Perú. 2(15):109-116.

Peng, H.; Hu, H.; Xi, K.; Zhu, X.; Zhou, J.; Yin, J.; Guo, F.; Liu, Y. and Zhu, Y. 2022. Silicon nanoparticles enhance ginger rhizomes tolerance to postharvest deterioration and resistance to Fusarium solani. Frontiers in Plant Science. 13:143-816. Doi: 10.3389/fpls.2022.816143.

Rastogi, A.; Tripathi, D. K.; Yadav, S.; Chauhan, D. K. and Živčák, M.; Ghorbanpour, M.; El-Sheery, N. I.; Brestic, M. 2019. Application of silicon nanoparticles in agriculture. 3 Biotech. 9(3):90. Doi: 10.1007/s13205-019-1626-7.

Ríos, E. A.; Vega, B. J. R.; Villegas, J. G. y Sánchez, J. A. 2020. Nanoestructuras de silicio en biomedicina y biotecnología. Revista de Física Momento. 60:18-40. Doi: 10.15446/mo.n60.78272.

Santos, H. A.; Bimbo, L. M.; Peltonen, L. and Hirvonen, J. 2014. Inorganic nanoparticles in targeted drug delivery and imaging. targeted drug delivery: concepts and Design. 571-613 pp. Doi: 10.1007/978-3-319-11355-5-18.

Smith, A. T.; LaChance, A. M.; Zeng, S. N.; Liu, B. and Sun, L. 2019. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science. 1(1):31-47. Doi: https://doi.org/10.1016/j.nanoms.2019.02.004.

Wang, X.; Peng, F.; Cheng, C.; Chen, L.; Shi, X.; Gao, X. and Li, J. 2021. Synergistic antifungal activity of graphene oxide and fungicides against fusarium head blight in vitro and in vivo. Nanomaterials (Basel). 11(9):2393. Doi: 10.3390/nano11092393.

Published

2024-12-30

How to Cite

Cerna-Chávez, Ernesto, Antonio Orozco-Plancarte, Yisa María Ochoa-Fuentes, Jeronimo Landeros-Flores, Diana Jasso de Rodríguez, and Anselmo Hernández Pérez. 2024. “In Vitro Effectiveness of Silicon Dioxide and Graphene Nanoparticles Combined With Extracts of Bacillus Amyloliquefaciens Against Phytopathogenic Fungi”. Revista Mexicana De Ciencias Agrícolas 15 (8). México, ME:e3140. https://doi.org/10.29312/remexca.v15i8.3140.

Issue

Section

Articles

Most read articles by the same author(s)