Use and abuse of fertigation. Modification of the soil in greenhouses in small-scale agriculture

Authors

  • Diego Huerta-Naveda Edafología-Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264
  • Arturo Galvis-Spinola Edafología-Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264
  • Teresa Marcela Hernández-Mendoza Departamento de Irrigación-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México. CP. 56230
  • Julián Delgadillo-Martínez Departamento de Irrigación-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v14i6.3112

Keywords:

edaphic chemical environment, fertilizers, productivity, tomato

Abstract

Protected agriculture helps improve agricultural productivity, but if the management is not adequate, it will increase the risk of affecting the environment and the profitability of crops. Therefore, in the municipality of Tetela de Ocampo, Puebla, in 2021, the chemical environment of the soil in greenhouses in the region that use fertigation was evaluated. To identify the details of agricultural activities, a questionnaire prepared specifically was applied to cooperating farmers, collecting a composite soil sample (five subsamples) per unit of production evaluated and uncultivated lands were included as a reference of the initial condition. The analysis of the samples was based on the NOM-021-RECNAT-2000 (NOM). The average annual yield of tomato is 31 ±7.6 kg m-2 and 87% of greenhouses have an area of less than 3 000 m2. They have technical assistance provided by companies and individuals, which include training courses and periodic soil analysis. In this study, excessive levels of all the chemical indicators established in the NOM were detected in the soil; nevertheless, the same fertilization program that has been carried out for several years in the region continues.

Downloads

Download data is not yet available.

References

Barak, P.; Jobe, B. O.; Krueger, A. R.; Peterson, L. A. and Laird, D. A. 1997. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil. 197(1):61-69. https://www.jstor.org/stable/42948199. DOI: https://doi.org/10.1023/A:1004297607070

Barrow, N. J. 1978. The description of phosphate adsorption curves. J. Soil Sci. 29(4):447-462. https://doi.org/10.1111/j.1365-2389.1978.tb00794.x. DOI: https://doi.org/10.1111/j.1365-2389.1978.tb00794.x

Cameron, K. C.; Di, H. J. and Moir, J. L. 2013. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162(2):145-173. https://doi.org/10.1111/aab.12014. DOI: https://doi.org/10.1111/aab.12014

Coitiño-López, J.; Barbazán, M. y Ernst, O. 2015. Conductividad eléctrica aparente para delimitar zonas de manejo en un suelo agrícola con reducida variabilidad en propiedades fisicoquímicas. Agrociencia Uruguay. 19(1):102-111. http://www.scielo.edu.uy/scielo. php?script=sci-arttext&pid=S230115482015000100012&lng=es&tlng=pt.

Griffioen, J. 2001. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater. J. Hydrol. 254(1-4):244-254. https://doi.org/10.1016/S0022-1694(01)00503-0. DOI: https://doi.org/10.1016/S0022-1694(01)00503-0

Hernández-Mendoza, T. M. y Galvis-Spinola, A. 2017. Productividad de la caña de azúcar por régimen hídrico y uso de fertilizantes en suelos someros. Interciencia. 42(4):218-223. https://www.interciencia.net/wp-content/uploads/2017/08/218-5856-hernandez-42-4.pdf.

INEGI. 2009. Instituto Nacional de Estadística y Geografía. Prontuario de información geográfica nacional. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos-geograficos/21/21172.pdf.

Ju, M.; Xu, Z.; Wei-Ming, S.; Guang-Xi, X. and Zhao-Liang, Z. 2011. Nitrogen balance and loss in a greenhouse vegetable system in southeastern China. Pedosphere. 21(4):464-472. https://doi.org/10.1016/S1002-0160(11)60148-3. DOI: https://doi.org/10.1016/S1002-0160(11)60148-3

Mundo-Coxca, M.; Jaramillo-Villanueva, J. L.; Morales-Jiménez, J.; Macías-López, A. y Ocampo-Mendoza, J. 2020. Caracterización tecnológica de las unidades de producción de tomate bajo invernadero en Puebla. Rev. Mex. Cienc. Agríc. 11(5):979-992. https://doi.org/10.29312/remexca.v11i5.2010. DOI: https://doi.org/10.29312/remexca.v11i5.2010

NOM. 2002. Norma Oficial Mexicana. NOM-021-RECNAT-2000 establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario oficial de la federación. http://dof.gob.mx/nota-detalle.php?codigo= 756861&fecha=07/12/200.

Sánchez-González, M. J.; Sánchez-Guerrero, M. C.; Medrano, E.; Porras, M. E.; Baeza, E. J.; García, M. L. y Lorenzo, P. 2014. Efectos de la salinidad y el enriquecimiento carbónico en invernadero sobre la bioproductividad y el contenido de nutrientes en un cultivo de tomate híbrido Raf (cv. Delizia). Acta Hortic. 66:78-84. http://www.sech.info/ ACTAS/index.php?d=main.

SIAP. 2021. Sistema de información agrícola y pesquera. Producción anual agrícola. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119.

Yasuor, H.; Yermiyahu, U. and Ben-Gal, A. 2020. Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study. Agric. Water Manag. 242:106362. 10 p. https://doi.org/10.1016/j.agwat.2020.106362.

Zörb, C.; Geilfus, C. M. and Dietz, K. J. 2019. Salinity and crop yield. Plant biology. 21:31-38. https://doi.org/10.1111/plb.12884.

Published

2023-09-09

How to Cite

Huerta-Naveda, Diego, Arturo Galvis-Spinola, Teresa Marcela Hernández-Mendoza, and Julián Delgadillo-Martínez. 2023. “Use and Abuse of Fertigation. Modification of the Soil in Greenhouses in Small-Scale Agriculture”. Revista Mexicana De Ciencias Agrícolas 14 (6). México, ME:e3112. https://doi.org/10.29312/remexca.v14i6.3112.

Issue

Section

Articles

Most read articles by the same author(s)