Phosphites and their applications in agriculture
DOI:
https://doi.org/10.29312/remexca.v13i2.2906Keywords:
biostimulator, fertilizer, fungicide, phosphorous acidAbstract
Phosphites are compounds derived from phosphorous acid that regularly combine with ions such as potassium, sodium, calcium or ammonium. The chemical difference between phosphates and phosphites lies in an oxygen atom, which is replaced by a hydrogen atom. Due to their structural similarity, phosphites are considered to be analogs of phosphates. Although the use of phosphites is currently accepted for their plant biostimulant action, as well as for their auxiliary action in the control of phytoparasites such as oomycetes, protozoa, fungi, bacteria and nematodes, their use as a source of phosphorus for plant nutrition is still debated. Both phosphites and phosphates can be taken up by plants through leaves or roots; however, phosphites cannot be reduced within the plant cell to a lower oxidation state. Nevertheless, phosphites can be oxidized to phosphates if applied directly to the soil. The ability of soil microorganisms to be able to oxidize phosphites to phosphates opens up a possibility that phosphites can be applied as a complementary source of nutrition to phosphate fertilizers. The document prepared is a review of studies that addresses the role that phosphites play in agriculture nowadays, their uses as biostimulators, fungicides and their possibility of use as phosphate fertilizer, as well as a compilation of the most relevant studies on these uses and the results.
Downloads
References
Albrigo, L. G. 1999. Effects of foliar applications of urea or nutriphite on flowering and yields of Valencia orange tres. Proc. Fla. State Hort. Soc. 112(1):1-4.
Amiri, A. and Bompeix, G. 2011. Control of penicillium expansum with potassium phosphite and heat treatment. Crop Protec. 30(2):222-227. https://doi.org/10.1016/j.cropro.2010. 10.010.
Araujo, L.; Valdebenito-Sanhueza, R. M. and Stadnik, M. J. 2010. Avaliação de formulações de fosfito de potássio sobre Colletotrichum gloeosporioides in vitro e no controle pósinfeccional da mancha foliar de glomerella em macieira. Tropical Plant Pathol. 35(1):54-59. http://www.scielo.br/pdf/ tpp/v35n1/a10v35n1.
Aziz, T.; Sabir, M.; Farooq, M.; Maqsood, M. and Ahmad, H. 2013. Phosphorous deficiency in plants: responses, adaptive mechanisms, and signaling. Plant signaling understanding the molecular crosstalk. Springer, New Delhi. 133-148 pp. Doi: 10.1007/978-81.322-1542-4-7.
Barpen. 2004. Ficha técnica Agrifos® 400 SL. http://www.ghcia.com.co/plm/source/ productos/2418-13-206.htm.
Bertsch, F.; Ramírez, F. y Henríquez, C. 2009. Evaluación del fosfito como fuente fertilizante de fósforo vía radical y foliar. Agron. Costarricense. 33(2):249-265. https://www.redalyc.org/ articulo.oa?id=436/43613279009.
Bettiol, W. 2006. Productos alternativos para el manejo de enfermedades en cultivos comerciales. Fitosanidad. 10(2):85-98.
Bozzo, G. G.; Singh, V. K. and Plaxton, W. C. 2004. Phosphate of phosphate addition promotes the proteolytic turnover of phosphate-starvation inducible tomato purple acid phosphatase isozymes. FEBS letters. 573(1):51-54.
Cerioni, L.; Rapisarda, V. A.; Doctor, J.; Fikkert, S.; Ruiz, T.; Fassel, R. and Smilanick, J. L. 2013. Use of phosphite salts in laboratory and semicommercial tests to control citrus postharvest decay. Plant Dis. 97(2):201-212. http://dx.doi.org/10.1094/PDIS-03-12-0299-RE.
Da-Silva, N. J and Blum, L. E. 2014. Influência de fungicidas e fosfito de potássio no controle da ferrugem asiática e na produtividade da soja. Rev. Caatinga. 27(1):75-82. https://www.redalyc.org/articulo.oa?id=2371/237130153009.
Daniel, R. and Guest, D. 2005. Defense responses induced by potassium phosphonate in Phytophthora palmivora challenged Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 67(3-5):194-201.
Eshraghi, L.; Anderson, J.; Aryamanesh, N.; Shearer, B.; McComb, J.; Hardy, G. E. S. and Brien, P. A. 2011. Phosphite primed defense responses and enhanced expression of defense genes in Arabidopsis thaliana infected with phytophthora cinnamomi. Plant Athology. 60(6):1086-1095. https://doi.org/10.1111/j.1365-3059.2011.02471.x.
Estrada-Ortiz, E.; Trejo, L. I.; Gómez, F. C.; Núñez, R. y Sandoval, M. 2011. Respuestas bioquímicas en fresa al suministro de fósforo en forma de fosfito. Rev. Chapingo Ser. Hortic. 17(3):129-138.
Estrada, O. E.; Gómez, F. C.; Silva, H. V.; Castillo, A. M. y Avitia, E. 2012. Respuestas de lechuga a la aplicación de fosfito en la solución nutritive. In: Congreso Nacional de Ciencias Agronómicas. Colegio de Postgraduados en Ciencias Agrícolas. Texcoco, Estado de México.
Fathi, Z.; Zamani, K. and Malboobi, M. 2021. Phosphite, biotechnology, modern agriculture. Crop Biotechnol. 10(32):55-70. Doi: 10.30473/cb.2021.57825.1833.
Fernández, M. T. 2007. Fósforo: amigo o enemigo. ICIDCA. Sobre los derivados de la caña de azúcar. 41(2):51-57. https://www.redalyc.org/articulo.oa?id=223114970009.
García-Velasco, R.; Mora-Herrera, M. E.; Mejía-Carranza, J.; Aguilar-Medel, S. y González-Millán, M. 2020. Fosfitos de potasio en el manejo de peronospora sparsa berkeley y calidad floral del cultivo de rosa cv Samouraï. Acta Agrícola y Pecuaria. 7(1):1-10. https://doi.org/10.30973/aap/2021.7.0071004.
Gómez-Merino, F. C. and Trejo-Téllez, L. I. 2015. Biostimulant activity of phosphite in horticulture. Scientia Hortic. 196(1):82-90. https://doi.org/10.1016/j.scienta.2015.09.035.
Havlin, J. L. and Schlegel, A. J. 2021. Review of phosphite as a plant nutrient and fungicide soil systems. 5(3):52-71. https://doi.org/10.3390/soilsystems5030052.
Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I. S. and White, P. 2012. Chapter 6 functions of macronutrients. In: marschner, P. (Ed.), marschner’s mineral nutrition of higher plants, third edition. Academic press, San Diego. 135-189 pp. https://doi.org/10.1016/B978-0-12-384905-2.00006-6.
Hofgaard, I. S.; Ergon, A.; Henriksen, B. and Tronsmo, A. M. 2010. The effect of potential resistance inducers on development of microdochium majus and Fusarium culmorum in winter wheat. Eur. J. Plant Pathol. 128(2):269-281. https://doi.org/10.1007/s10658-010-9662-5.
Jackson, T. J.; Burgess, T.; Colquhoun, I. and Hardy, G. 2000. Action of the fungicide phosphite on Eucalyptus marginate inoculated with Phytophthora cinnamomi. Plant Patholol. 49(1):147-154. https://doi.org/10.1046/j.1365-3059.2000.00422.x.
King, M.; Reeve, W.; Van-Hoek, M. B.; Williams, N.; McComb, J.; Brien, P. A. and Hardy, G. E. 2010. Defining the phosphite-regulated transcriptome of the plant pathogen phytophthora cinnamomi. Mol. Genet Genomics. 284(6):425-35. https://doi.org/10.1007/s00438-010-0579-7.
Liljeroth, E.; Lankinen, A.; Wiik, L.; Burra, D. D.; Alexandersson, E. and Andreasson, E. 2016. Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Protec. 86(1):42-55.
Lovatt, C. J. 1999. Timing citrus and avocado foliar nutrient applications to increase fruit set and size. HortTech. 9(4):607-612.
Lovatt, C. and Mikkelsen, R. 2006. Phosphite fertilizers: what are they? can you use them? what can they do? Better Crops. 90(4):11-13.
Manna, M.; Achary, V. M. M.; Islam T. M; Agrawal, P. Q. and Reddy, M. K. 2016. The development of a phosphite-mediated fertilization and weed control system for rice. Scientific Reports. 6(1):1-13. https://doi.org/ 10.1038/srep24941.
McDonald, A. E.; Grant, B. R. and Plaxton W. C. 2001. Phosphite (phosphorous acid): its relevance in the environment and agriculture, and influence on the plant phosphate starvation response. J. Plant Nutr. 24(10):1505-1519. Doi: 10.1081/PLN-100106017.
Mixquititla-Casbis, G. y Villegas-Torres, O. G. 2016. Importancia de los fosfatos y fosfitos en la nutrición de cultivos. Acta Agrícola y Pecuaria. 2(3):55-61.
Mogollón, A. M. and Castaño, J. 2012. Evaluación in vitro de inductores de resistencia sobre Mycosphaerella fijiensis Morelet. Rev. Facultad Nacional de Agronomía. 65(1):6327-6336.
Monsalve, V.; Viteri, R.; Rubio, C. y Tovar, D. 2012. Efectos del fosfito de potasio en combinación con el fungicida metalaxyl mancozeb en el control de Mildeo velloso (peronospora destructor berk) en cebolla de bulbo (Allium cepa L.). Rev. Facultad Nacional de Agronomía Medellín. 65(1):6317-6325. http://www.redalyc.org/articulo.oa?id= 179924340003.
Olivieri, F. P.; Feldman, M. L.; Machinandiarena, M. F.; Lobato, M. C.; Caldiz, D. O.; Dalo, G. R. and Andreu, A. B. 2012. Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens. Crop Protec. 32(1):1-6. https://doi.org/10.1016/j.cropro. 2011.08.025.
Relyea, H. A. and Van-Donk, W. A. 2005. Mechanism and applications of phosphite dehydrogenase. Bioorganic Chem. 33(3):171-189. Doi: 10.1016/j.bioorg.2005.01.003.
Ribeiro-Chagas, J.; Costa, R.; Dos-Santos, G.; Abadia, M. and Costa, E. 2020. Foliar fungal diseases control and productivity depending on the phosphite and fungicide application in two corn hybrids. Biot. Veg. Villa clara. 20(1):33-41. http://scielo.sld.cu/scielo.php? script=sci-arttext&pid=S207486472020000100033&lng=es&nrm=iso.
Silva, O.; Santos, A. A.; Deschamps, C.; Dalla-Pria, M. y May-Mio, L. 2013. Fontes de fosfito e acibenzolar-S-metílico associados a fungicidas para o controle de doenças foliares na cultura da soja. Tropical plant pathology. 38(1):72-77.
Thao, H. and Yamakawa, T. 2009. Phosphite (phosphorous acid): fungicide, fertilizer or bio-estimulator? Soil Sci. Plant Nutr. 55(2):228-234. Doi: 10.1111/j.1747-0765.2009.00365.x.
Thao, H.; Yamakawa T.; Myint, A. and Sarr, P. 2008. Effects of phosphite, a reduced form of phosphate, on the growth and phosphorus nutrition of spinach (Spinacia oleracea L.). Soil Sci. Plant Nutr. 54(5):761-768.
Thao, H.; Yamakawa T. and Shibata, K. 2009. Effect of phosphite–phosphate interaction on growth and quality of hydroponic lettuce (Lactuca sativa). Soil Sci. Plant Nutr Sci. 172(3):378-384.
Varadarajan, D. K; Karthikeyan, A. S.; Matilda, P. D. and Raghothama, K. G. 2002. Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol. 129(3):1232-1240.
Vinas, M; Mendez, J. C. and Jiménez, V. M. 2020. Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants. Sci. Hortic. 265(1):109-200. Doi: 10.1016/j.scienta.2020.109200.
Wong, M. A.; McComb, B. J.; Hardy, B. G. E. J. and Brien, P. A. 2009. Phosphite induces expression of a putative proteophosphoglycan gene in phytophthora cinnamomi. Australasian Plant Pathol. 38(3):235-241. https://doi.org/10.1071/AP08101.
Wu, L.; Gao, X.; Xia, F.; Joshi, J.; Borza, T. and Wang-Pruski, G. 2018. Biostimulant and fungicidal effects of phosphite assessed by GC-TOF-MS analysis of potato leaf metabolome. Physiol. Mol. Plant Pathol. 106(1):49-56. https://doi.org/10.1016/j.pmpp. 2018.12.001.
Yáñez-Juárez, M. G.; López-Orona, C. A.; Ayala-Tafoya F.; Partida-Ruvalcaba, L.; Velázquez-Alcaraz T. J. and Medina-López R. 2018. Phosphites as alternative for the management of phytopathological problems. Rev. Mex. Fitopatol. 36(1):79-94. https://doi.org/10.18781/ r.mex.fit.1710-7.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.