Reference evapotranspiration estimated by Penman-Monteith-Fao, Priestley-Taylor, Hargreaves and ANN

Authors

  • Sandra Santiago-Rodríguez Departamento de Irrigación- Universidad Autónoma Chapingo. Carretera México-Texcoco, km 38.5, Chapingo, Estado de México, C. P. 56230
  • Ramón Arteaga-Ramírez Departamento de Irrigación- Universidad Autónoma Chapingo. Carretera México-Texcoco, km 38.5, Chapingo, Estado de México, C. P. 56230
  • Dora Ma. Sangerman-Jarquín Campo experimental Valle de México, INIFAP. Km. 18.5 Carretera los Reyes-Lechería A. P. 10, C. P. 56230 Chapingo-Texcoco, Estado de México
  • Rocío Cervantes-Osornio Departamento de Irrigación- Universidad Autónoma Chapingo. Carretera México-Texcoco, km 38.5, Chapingo, Estado de México, C. P. 56230
  • Agustín Navarro Bravo Departamento de Irrigación- Universidad Autónoma Chapingo. Carretera México-Texcoco, km 38.5, Chapingo, Estado de México, C. P. 56230

DOI:

https://doi.org/10.29312/remexca.v3i8.1319

Keywords:

Math lab, estimation, forecast, irrigation, weather variables

Abstract

The irrigation water is a requirement of crops and is based on the estimation of reference evapotranspiration (ETo) of each particular area, are subject to the limitation of existing meteorological data. The objective was to calculate ETo with FAO-Penman-Monteith (FAO-PM), Hargreaves (H), Priestly-Taylor (PT) and artificial neural networks (ANN). We used data from the weather station of Chapingo for the period 2003-2009. In the H and PT methods, four climatic variables were used for their calculation and in ANN were constructed different scenarios to evaluate the performance of the network, by changing the input climatic variables and the number of neurons in the hidden layer. The results of the coefficient of determination (r2) and root mean square error (RMSE) of H and PT are: 0.5378, 0.8553 and 0.6977, 0.6501 respectively. For ANN was found that with the largest number of variables and neurons in the hidden layer was obtained an r2 0.9986, and RMSE 0.0297 and in the scenario with the least number of variables and neurons in the hidden layer were 0.7549 and 0.5555. If you count with all the climatic variables ANN is better because the RMSE results are close to zero and its r2 approaches to one. If ANN decreases the number of neurons in the hidden layer and the variables, gives the greatest error estimate of ETo, but lower than those obtained by H and PT.

Downloads

Download data is not yet available.

Published

2018-06-12

How to Cite

Santiago-Rodríguez Sandra, Arteaga-Ramírez Ramón, Sangerman-Jarquín Dora Ma., Cervantes-Osornio Rocío, and Navarro Bravo Agustín. 2018. “Reference Evapotranspiration Estimated by Penman-Monteith-Fao, Priestley-Taylor, Hargreaves and ANN”. Revista Mexicana De Ciencias Agrícolas 3 (8). México, ME:1535-49. https://doi.org/10.29312/remexca.v3i8.1319.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>